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The solution of the Lax tensor equations in the case Lαβγ = −Lβαγ was analyzed.
The Lax tensors on the dual metrics were investigated. We classified all two-dimensional
metrics having the symmetric Lax tensor Lαβγ . The Lax tensors of the flat space, Rindler
system and its dual were found.

1. Introduction

Killing tensors are indispensable tools in the quest for exact solutions in many

branches of general relativity as well as classical mechanics.1 Killing tensors are im-

portant for solving the equations of motion in particular space–times. The notable

example here is the Kerr metric which admits a second rank Killing tensor.1 Killing

tensors give rise to new exact solutions in perfect fluid Bianchi and Katowski–Sachs

cosmologies as well in inflationary models with a scalar field sources.2 Recently,

Killing tensors of third rank in (1+1)-dimensional geometry were investigated and

classified.3 Even more recently the Killing tensors of order two associated with

orthogonal separable coordinates for the Klein–Gordon equation in flat (2 + 1)-

dimensional space–time were considered as metrics.4 In a geometrical setting, sym-

metries are connected with isometries associated with Killing vectors, and more

generally, Killing tensors on the configuration space of the system. An example is

the motion of a point particle in a space with isometries, which is a physicist’s way

of studying the geodesic structure of a manifold.5 We recall that Kαβ is a Killing

tensor if and only if for any geodesic motion of a test particle with a world velocity

pα, the scalar Kαβp
αpβ is a constant of motion.6 The Jacobi’s geometrical model

of dynamical systems with a finite number of degrees of freedom was investigated

by many authors (see, for example, Refs. 7 and 8). The essential conclusion was

that: The paths of the motions of a dynamical system in the configuration space
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are identical with the geodesics of the Riemannian manifold obtained by providing

the configuration space with the metric given by

ds2 = gijdqidqj = 2(E − V )aijdqidqj . (1)

We mention here that T = 1
2aij q̇iq̇j (the dot signifying derivation with respect to

time and aij are functions of the q’s), V is a function of the q’s only and T+V = E.

In Ref. 9 it was pointed out that a single Lax tensor may generate an infinite number

of tensors of varying ranks. It is well known that the most general constant on a

geodesic motion is of the form

K = K0 + χµp
µ +Kµνp

µpν +Kµνλp
µpνpλ + · · · , (2)

where K0 is a constant of motion on the geodesic, χµ is a Killing vector andKµ1···µn
is a Killing tensor of order n. The important point is that if we are using Jacobi’s

geometrical model, a natural way to produce Killing tensors is to consider the

elements of the Lax matrix10,11 Lαβ as Lαβ = Lγαβpγ+Cαβ .
12 Here Cαβ is a matrix

having the elements satisfying the following relations tr(Cαβ) = K0, L
α
αβ = χβ ,

Kαβ = LµναL
ν
µβ and so on. Open three-dimensional Toda’s case analyzed in Ref. 9

is a special and very interesting case because the Lax tensor generates a Killing

tensor of order two which is equal to the metric tensor. We know that in this case

Killing tensor of order two is called trivial (for more details see Ref. 13). Recently

the geometric duality between a metric gµν and its non-degenerate Killing tensor

Kµν and the structural equations of a Killing tensor of order two were analyzed in

Refs. 14 and 15. An interesting example arises when the manifold admits Killing–

Yano tensors16 because they generate Killing tensors. In addition we know that

any manifold having constant curvature admits Killing–Yano tensors and then it

admits Killing tensors.

For these reasons the Lax tensor equations on a given manifold and its dual are

interesting to investigate.

This letter is organized as follows: In Sec. 2 the Lax pair tensors are investi-

gated. In Sec. 3 the geometric duality is presented and the Lax tensors on the dual

manifolds are analyzed. In Sec. 4 the examples are presented. Section 5 contains

our comments and remarks.

2. Lax Pair Tensors

Let us consider a Riemannian or pseudo-Riemannian geometry with the metric

ds2 = gµν dq
µ dqν . (3)

The geodesic equation can be represented by the Hamiltonian

H =
1

2
gµνpµpν , (4)

together with the natural Poisson bracket on the cotangent bundle. The geodesic

system has the form

q̇α = gαµpµ , ṗα = Γµνα pµpν . (5)
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The complete integrability of this system can be shown with the help of a pair

of matrices L and A with entries defined on the phase space and satisfying the Lax

pair equation.10,11

L̇ = {L,H} = [L,A] . (6)

It follows from (6) that the quantities Ik = 1
k TrLk are all constants of motion. If in

addition they commute with each other {Ik, Ij} = 0 then it is possible to integrate

the system completely at least in principle. We know that Lax pair equation is

invariant under a transformation of the form

Ũ = ULU−1 , Ã = UAU−1 − U̇U−1 . (7)

We see that L transforms as a tensor while A transforms as a connection. Typically,

the Lax matrices are linear in the momenta and in the geometric setting that may

also be assumed to be homogeneous. This motivates the introduction of two third

rank geometrical objects Lαβ
γ and Aαβ

γ such that the Lax matrices can be written

as

L = (Lαβ) = (Lαµβ pµ) , A = (Aαβ ) = (Aαµβ pµ) . (8)

We will refer to Lαβ
γ andAαβ

γ as the Lax tensor and the Lax connection, respectively.

Defining

B = (Bαβ ) = (Bαµβ pµ) = A− Γ , (9)

where Γ = (Γαβ ) = (Γαβ
µpµ) is the Levi–Cività connection with respect to gαβ, it

then follows that the Lax pair equation takes the covariant form. Let us suppose

that a manifold gµν admits a Lax pair tensors Lαβγ, Aαβγ in such a way that

Lαβγ;δ + Lαβδ;γ = Lαµ(γB
µ
|β|δ) −Bαµ(γL

µ
|β|δ) . (10)

Here the parentheses denote the full symmetrization. We know that a Killing

tensor of order n is a symmetric tensorKµ1···µn which satisfies the following relation:

D(λKµ1···µn) = 0 , (11)

where Dµ denotes covariant derivative and using (10), in the case when Lαβγ has

only symmetric part, we find immediately that L(αβγ;δ) = 0 for Bαβγ = 0. Then it

is a Killing tensor of order three. Any solution of (10) generates an infinite number

of Killing tensors on a given manifold. Of course not all Killing tensors generated

by Lax tensors are independent and some of them are trivial Killing tensors.13

Another important observation is that in the case when we have gαβ = LµναL
ν
µβ we

can identify the invariant I2 with the geodesic Hamiltonian.

Let us suppose that the manifold admits a Killing tensor Kαβ and define a

three-dimensional tensor as

Lαβγ = Kβγ;α −Kαγ;β . (12)

We conclude immediately that it has the symmetries

Lαβγ = L[αβ]γ , L[αβγ] = 0 , (13)
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where square brackets denote the anti-symmetrization. After an appropriate group-

ing of terms and use of the symmetries of the Riemann tensor Rαβγδ we obtain

Lαβ(γ;δ) = −2Rαβµ(γK
µ
δ) − 2Kµ

[αRβ]µ(γδ)µ . (14)

We are interested now to investigate if (12) satisfies (10). In other words, our

problem is to find a tensor Bαβγ in such a way that (10) is satisfied. Using (10)

and (12) we conclude that Bαβγ = −Bβαγ . Let us denote Vαβγ as Vαβγ = L[αβ]γ.

Taking into account (10) and (14) we find that

Vαµ(γB
µ
|β|δ) − Vβµ(γB

µ
|α|δ) = Rαβµ(γK

µ
δ) +Kµ

[αRβ]µ(γδ)µ . (15)

Solving (15) we can determine Bαβγ .

Using definition of a Killing tensor of order two and (12) we get

Kβγ;α =
2

3
Lα(βγ) . (16)

Conversely, (16) and the conditions Lαβγ = −Lβαγ , L[αβγ] = 0 imply (12) and

that Kαβ is a Killing tensor.

Another interesting case is when Lαβγ = Vαβγ and in addition we suppose that

Bαβγ = Lαβγ . For this case the Lax equations become

Vαβ(γ;δ) = 0 , (17)

and we see that (17) looks like Killing–Yano equations.

3. Geometric Duality

Let us suppose that the metric gµν admits a Killing tensor field Kµν .

From the covariant components Kµν of the Killing tensor one can construct a

constant of motion K = 1
2Kµνp

µpν . It can be verified that {H,K} = 0. The formal

similarity between the constants of motion H and K, and the symmetrical nature

of the condition implying the existence of the Killing tensor amount to a reciprocal

relation between two different models: the model with Hamiltonian H and constant

of motion K, and a model with constant of motion H and Hamiltonian K. The

relation between the two models has a geometrical interpretation: It implies that if

Kµν are the contravariant components of a Killing tensor with respect to the metric

gµν , then gµν must represent a Killing tensor with respect to the metric defined by

Kµν . When Kµν has an inverse we interpret it as the metric of another space and

we can define the associated Riemann–Christoffel connection Γ̂λµν as usual through

the metric postulate D̂λKµν = 0. Here D̂ represents the covariant derivative with

respect to Kµν . This reciprocal relation between the metric structure of pairs of

spaces constitutes a duality relation: performing the operation of mapping a Killing

tensor to a metric twice leads back to the original theory.

The relation between connections Γ̂σαβ and Γσαβ is15

Γ̂µαβ = Γµαβ −KµδDδKαβ . (18)
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In the case when the tensor Bαβδ is symmetric in the lower indices and has the form

Bαβδ = KαωDωKβδ , (19)

then (10) becomes

L̂αβγ;δ + L̂αβδ;γ = 0 . (20)

Here comma represents the covariant derivative in the dual space. We are interested

now to investigate when the original space and its dual admit the same Lax tensors.

Proposition 3.1. The manifold and its dual have the same Lax tensors iff

2(KσωDωKγδ)Lαβσ + (KσωDωKαδ)Lσβγ

+ (KσωDωKαγ)Lσβδ + (KσωDωKβδ)Lασγ + (KσωDωKβγ)Lασδ = 0 . (21)

Proof. Let us consider Lαβγ , the Lax tensor, satisfies

Lαβ(γ;δ) = 0 (22)

and L̂αβγ be the dual Lax tensor. Using (18), the corresponding dual Lax equations

are

DδL̂αβγ +DγL̂αβδ + 2(KσωDωKγδ)L̂αβσ + (KσωDωKαδ)L̂σβγ

+ (KσωDωKαγ)L̂σβδ + (KσωDωKβδ)L̂ασγ + (KσωDωKβγ)L̂ασδ = 0 . (23)

Let us suppose that L̂αβγ = Lαβγ, then using (22) and (23) we obtain (21). Con-

versely if we suppose that (21) holds, then from (23) we can deduce immediately

that Lαβγ = L̂αβγ. Q.E.D.

4. Examples

In this section we will present some examples when Eq. (10) admits solutions.

4.1. Let us consider the n-dimensional Euclidean space and first let us investigate

the Lax equations corresponding to Bαβγ = 0. Then (10) becomes

∂Lαβγ

∂xδ
+
∂Lαβδ

∂xγ
= 0 . (24)

The solution of this equation has the form

Lαβγ = Tαβγσx
σ + Vαβγ , (25)

where Tαβγσ and Vαβγ are constant tensors and in addition Tαβγσ = −Tαβσγ .

4.2. Let us consider now the two-dimensional metric

ds2 = f(u, v)du2 + g(u, v)dv2 . (26)
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We are interested to investigate the Lax tensors when Lαβγ is symmetric and

Aαβγ = Γαβγ . The non-vanishing Christoffel symbols of (26) are

Γ1
11 =

∂f
∂u

2f
, Γ2

11 =
−∂f
∂v

2g
, Γ1

21 = Γ1
12 =

∂f
∂v

2f
,

Γ2
22 =

− ∂g
∂u

2f
, Γ2

22 =
∂g
∂v

2g
, Γ1

21 = Γ2
12 =

∂g
∂u

2g
.

(27)

Lαβγ has four independent components L111, L112, L122, L222 and the independent

Lax equations are

L11(1;u) = 0 , L11(1;v) = 0 , L11(2;u) = 0 , L11(2;v) = 0 ,

L12(2;u) = 0 , L12(2;v) = 0 , L22(2;u) = 0 , L22(2;v) = 0 .
(28)

After some calculations, we found that if the scalar curvature of the manifold cor-

responding to (26) is 0, then the system (28) is integrable.

Let us consider now the Rindler system. The Rindler system17 is conventionally

denoted by τ and r

t = r sinh τ , x = r cos τ , 0 < r <∞ , −∞ < τ <∞ , (29)

with coordinate curves (timelike hyperbolas and spacelike straight lines) given by

x2 − t2 = r2 ,
t

x
= tanh τ , (30)

the metric

ds2 = r2 dτ2 − dr2 , (31)

and the associated Killing tensor

kik =

(
1− c

r2
0

0 c

)
. (32)

Here c is a constant. The nonzero Christoffel symbols are Γ2
11 = r, Γ1

12 = 1/r.

Solving (28) we found the solution of the Lax equations having the form

L122 = (C1e
−τ + C2e

3τ )r , L112 = (C1e
−τ + C2e

3τ )r2 ,

L111 = −(3C1e
−τ − C2e

3τ )r3 , L222 = −3C1e
−τ + C2e

3τ ,
(33)

where C1 and C2 are constants.

The next step is to find a solution of the form (12) corresponding to the Rindler

system. Using (12) and (32) we found immediately the solution having the form

L121 = −r
3(r2 − 3c)2

c(r2 − c)2 , L122 = 0 . (34)

Let us consider now the tensor

Kµν = gµλgνδKλδ (35)
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and a connection defined as in (18). Using (18) and taking into account (32) and

(35) we found a new metric having the nonzero components

dŝ2 = r2 dτ2 +
c(r2 − c)2

2r2 + r4c− 2r2c2 + c3
dr2 . (36)

The scalar curvature corresponding to (36) is R = 4(r2+c)
c(−r2+c)3 , then this metric has

no symmetric Lax tensors.

5. Concluding Remarks

In this letter we investigated the Lax equations on a given manifold and its dual.

When a manifold admits a Killing tensor Kµν , we constructed a tensor Lαβγ as

Lαβγ = Kβγ;α −Kαγ;β and found the conditions when it is a Lax tensor. In this

case Lαβγ is antisymmetric in the first two indices and Bαβγ should have the same

property. If in addition we suppose that Bβαγ = Lαβγ , we found that (10) has the

simple form Lαβ(γ;δ) = 0. We found the conditions when the manifold and its dual

have the same Lax tensors. For the two-dimensional manifolds we found that the

symmetric Lax tensors exist if the scalar curvature is zero. The solution of the Lax

equations for the flat space case, the Rindler system and its dual manifold were

found.

Finding the Lax tensors on the manifolds which admits Killing–Yano tensors is

an interesting problem and it requires further investigation.
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