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The solution of the Lax tensor equations in the case Logy = —Lga, Was analyzed.
The Lax tensors on the dual metrics were investigated. We classified all two-dimensional
metrics having the symmetric Lax tensor L,g~. The Lax tensors of the flat space, Rindler
system and its dual were found.

1. Introduction

Killing tensors are indispensable tools in the quest for exact solutions in many
branches of general relativity as well as classical mechanics.! Killing tensors are im-
portant for solving the equations of motion in particular space—times. The notable
example here is the Kerr metric which admits a second rank Killing tensor.! Killing
tensors give rise to new exact solutions in perfect fluid Bianchi and Katowski—Sachs
cosmologies as well in inflationary models with a scalar field sources.? Recently,
Killing tensors of third rank in (1 + 1)-dimensional geometry were investigated and
classified.> Even more recently the Killing tensors of order two associated with
orthogonal separable coordinates for the Klein-Gordon equation in flat (2 + 1)-
dimensional space-time were considered as metrics.? In a geometrical setting, sym-
metries are connected with isometries associated with Killing vectors, and more
generally, Killing tensors on the configuration space of the system. An example is
the motion of a point particle in a space with isometries, which is a physicist’s way
of studying the geodesic structure of a manifold.> We recall that K,z is a Killing
tensor if and only if for any geodesic motion of a test particle with a world velocity
p“, the scalar Ka,gpo‘pﬂ is a constant of motion.® The Jacobi’s geometrical model
of dynamical systems with a finite number of degrees of freedom was investigated
by many authors (see, for example, Refs. 7 and 8). The essential conclusion was
that: The paths of the motions of a dynamical system in the configuration space
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are identical with the geodesics of the Riemannian manifold obtained by providing
the configuration space with the metric given by

ds® = gijdgidg; = 2(E — V)ai;dgidg; . (1)

We mention here that T' = %aij ¢ig; (the dot signifying derivation with respect to
time and a;; are functions of the ¢’s), V' is a function of the ¢’s only and T+V = E.
In Ref. 9 it was pointed out that a single Lax tensor may generate an infinite number
of tensors of varying ranks. It is well known that the most general constant on a
geodesic motion is of the form

K = Ko+ xup" + Kuwp"p” + Kunp'p'n* +--+ (2)
where Kj is a constant of motion on the geodesic, x,, is a Killing vector and K, ...,
is a Killing tensor of order n. The important point is that if we are using Jacobi’s
geometrical model, a natural way to produce Killing tensors is to consider the
elements of the Lax matrix'®'! Lag as Lag = L gy +Cap.'? Here Cop is a matrix
having the elements satisfying the following relations tr(Cag) = Ko, Los = xg.
Kap = LI, L} 5 and so on. Open three-dimensional Toda’s case analyzed in Ref. 9
is a special and very interesting case because the Lax tensor generates a Killing
tensor of order two which is equal to the metric tensor. We know that in this case
Killing tensor of order two is called trivial (for more details see Ref. 13). Recently

the geometric duality between a metric g#* and its non-degenerate Killing tensor
K" and the structural equations of a Killing tensor of order two were analyzed in
Refs. 14 and 15. An interesting example arises when the manifold admits Killing—
(Vaiiio §ensors™™) (ecatisentlieyIgenerateNKilligenseis) [n addition we know that

any manifold having constant curvature admits Killing—Yano tensors and then it
admits Killing tensors.

For these reasons the Lax tensor equations on a given manifold and its dual are
interesting to investigate.

This letter is organized as follows: In Sec. 2 the Lax pair tensors are investi-
gated. In Sec. 3 the geometric duality is presented and the Lax tensors on the dual
manifolds are analyzed. In Sec. 4 the examples are presented. Section 5 contains
our comments and remarks.
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then follows that the Lax pair equation takes the covariant form. Let us suppose

that a manifold g,, admits a Lax pair tensors Lagy, Aagy in such a way that

B By Ll - (10)

Logyis + Lagsyy = Lau(w |Hg|5) B

Here the parentheses denote the full symmetrization. We know that a Killing
tensor of order n is a symmetric tensor K, ...,,, which satisfies the following relation:

D(AKllzl"'ll/n) == 0, (11)

ap(y

where D), denotes covariant derivative and using (10), in the case when Lqg, has
only symmetric part, we find immediately that L(ag,,5) = 0 for B = 0. Then it
is a Killing tensor of order three. Any solution of (10) generates an infinite number
of Killing tensors on a given manifold. Of course not all Killing tensors generated
by Lax tensors are independent and some of them are trivial Killing tensors.!3
Another important observation is that in the case when we have gog = LE. L5 we
can identify the invariant I with the geodesic Hamiltonian.

Let us suppose that the manifold admits a Killing tensor K,z and define a
three-dimensional tensor as

Lapy = Kpgyia = Kayip - (12)
We conclude immediately that it has the symmetries

Laﬂ’y = L[a,@]'yv L[aﬂ'y] = 07 (13)
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where square brackets denote the anti-symmetrization. After an appropriate group-
ing of terms and use of the symmetries of the Riemann tensor R,g,s we obtain

Lop(vs) = —2R, 5, KY —2K"R (14)

aBu(y79) [ " Blu(vd)p

We are interested now to investigate if (12) satisfies (10). In other words, our
problem is to find a tensor B,g, in such a way that (10) is satisfied. Using (10)
and (12) we conclude that B,g, = —Bgay. Let us denote Vo5, as Vagy = Liagly-
Taking into account (10) and (14) we find that

VourBlois) ~

Solving (15) we can determine Bg. .
Using definition of a Killing tensor of order two and (12) we get

Vi Blats) = Ragu, Kb + K[LR (15)

aBu(y ) [a Blu(vd)p

2
Kpyia = gLa(ﬁv)' (16)

Conversely, (16) and the conditions Lagy = —Lga~; Ljag, = 0 imply (12) and
that K,g is a Killing tensor.

Another interesting case is when L,g, = Vag, and in addition we suppose that
Bapy = Lagy. For this case the Lax equations become

Va,@('y;&) = 07 (17)

and we see that (17) looks like Killing—Yano equations.

3. Geometric Duality

Let us suppose that the metric g, admits a Killing tensor field K, .

From the covariant components K, of the Killing tensor one can construct a
constant of motion K = %Kw,p“p”. It can be verified that {H, K} = 0. The formal
similarity between the constants of motion H and K, and the symmetrical nature
of the condition implying the existence of the Killing tensor amount to a reciprocal
relation between two different models: the model with Hamiltonian H and constant
of motion K, and a model with constant of motion H and Hamiltonian K. The
relation between the two models has a geometrical interpretation: It implies that if
K,,, are the contravariant components of a Killing tensor with respect to the metric
Juv, then g, must represent a Killing tensor with respect to the metric defined by
K,,. When K, has an inverse we interpret it as the metric of another space and
we can define the associated Riemann—Christoffel connection f‘fw as usual through
the metric postulate DK w = 0. Here D represents the covariant derivative with
respect to K. This reciprocal relation between the metric structure of pairs of
spaces constitutes a duality relation: performing the operation of mapping a Killing
tensor to a metric twice leads back to the original theory.

The relation between connections I'7; and T'q 5 is'®

I =Th, — K" D;Kop. (18)
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In the case when the tensor Bj; is symmetric in the lower indices and has the form
Bgs = K*D,Kgs, (19)
then (10) becomes
ﬁaﬂvﬁ + i/aﬂ&'y =0. (20)

Here comma represents the covariant derivative in the dual space. We are interested
now to investigate when the original space and its dual admit the same Lax tensors.

Proof. Let us consider Lagy, the Lax tensor, satisfies
Lap(ye) =0 (22)

and Lag, be the dual Lax tensor. Using (18), the corresponding dual Lax equations
are

DsLagy + DyLags + 2K DyKys) Laps + (K7 DyKas) Lopy
+ (K°“DuKar) Lops + (K DuKps) Laoy + (K" DuKpy)Laos = 0. (23)

Let us suppose that Lagy = Lag,, then using (22) and (23) we obtain (21). Con-
wversely if we suppose that (21) holds, then from (23) we can deduce immediately
that Lapy = Lapy. Q.E.D.

4. Examples

In this section we will present some examples when Eq. (10) admits solutions.

4.1. Let us consider the n-dimensional Euclidean space and first let us investigate
the Lax equations corresponding to B, = 0. Then (10) becomes

OLogy n OLups

=0. 24
Oxd ox" (24)
The solution of this equation has the form
Lapy = Tapyox” + Vapy (25)
where T, 3,5 and Vg, are constant tensors and in addition Thgyo = —Tagoy-

4.2. Let us consider now the two-dimensional metric

ds® = f(u,v)du® + g(u,v)dv? . (26)
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We are interested to investigate the Lax tensors when L,g, is symmetric and
Aagy = T'agy. The non-vanishing Christoffel symbols of (26) are

of _of of
I = _3; ) I = —2?;) ) Iy =T = _28} )
(27)
_9g 9g 9g
F%2 = —2(}“ ) F%z = _32 ) F%l = F%2 = _3; :

Lqpy has four independent components L111, L112, L122, L2z and the independent
Lax equations are
L1y =0, Liia0) =0, Liy2w) =0, Lii2:0) =0,
(28)
Liz2;0) =0, Li3(20) =0, L) =0, Las2.) = 0.

After some calculations, we found that if the scalar curvature of the manifold cor-
responding to (26) is 0, then the system (28) is integrable.

g=reubr, p=resT, 0<r<es, —w<r<oo, (@9
ageete
Selwgs

-+9 -

T = @0 = G, T = =301 Cae
‘where Cy and C3 are constants.

The next step is to find a solution of the form (12) corresponding to the Rindler
system. Using (12) and (32) we found immediately the solution having the form

r3(r? — 3c)?
e(r2 —c¢)? ’

Let us consider now the tensor

KM = g"g" Kxs (35)

Lig =~ Lz =0. (34)
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and a connection defined as in (18). Using (18) and taking into account (32) and
(35) we found a new metric having the nonzero components

2 2
22 23 2 c(r* —c) 2

d§* =rodrs + 2r2+r4c—27‘202+c3dr . (36)

The scalar curvature corresponding to (36) is R = %, then this metric has

no symmetric Lax tensors.

5. Concluding Remarks

In this letter we investigated the Lax equations on a given manifold and its dual.
When a manifold admits a Killing tensor K,,, we constructed a tensor L,g, as
Logy = Kgy;a — Kovy;p and found the conditions when it is a Lax tensor. In this
case Log, is antisymmetric in the first two indices and B,g should have the same
property. If in addition we suppose that Bgay = Lagy, we found that (10) has the
simple form L,g(y;5) = 0. We found the conditions when the manifold and its dual
have the same Lax tensors. For the two-dimensional manifolds we found that the
symmetric Lax tensors exist if the scalar curvature is zero. The solution of the Lax
equations for the flat space case, the Rindler system and its dual manifold were
found.

Finding the Lax tensors on the manifolds which admits Killing—Yano tensors is
an interesting problem and it requires further investigation.
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