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Negative mass solitons in gravity
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We first reconstruct the conserved (Abbott-Deser) charges in the spin-connection formalism of gravity
for asymptotically (Anti)-de Sitter spaces, and then compute the masses of the AdS soliton and the
recently found Eguchi-Hanson solitons in generic odd dimensions, unlike the previous result obtained for
only five dimensions. These solutions have negative masses compared to the global AdS or AdS=Zp
spacetimes. As a separate note, we also compute the masses of the recent even dimensional Taub-NUT-
Reissner-Nordström metrics.
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I. INTRODUCTION

Energy definition in theories with gravity has been a
thorny issue since the inception of General Relativity. Even
though Einstein’s equation relates local properties of ge-
ometry to the local properties of matter, when integrated it,
nevertheless, requires one to express the properties (such as
mass) of gravitating matter in terms of diffeomorphism
invariant geometric quantities. In a theory without gravity,
such as quantum field theory in flat spacetime, obtaining
the conserved charges, a la Noether, would be a straight-
forward task. However, Noether’s method, as employed by
Komar [1], leads to certain ambiguities with gravity; such
as assigning different normalization factors—to match the
weak field Newtonian limits—for the mass and angular
momenta of asymptotically flat black hole spacetimes.
[Unlike the conserved charges of isolated local objects in
gravity-free theories, one can only talk about the total
energy of a spacetime since gravity cannot be confined to
a region and, as long as diffeomorphism invariance is
required, one has to talk about the energy of a whole
spacetime as opposed to a finite domain.]

There are remedies for Komar’s method but the problem
is that there are simply ‘‘too many‘‘ different ones for
various spacetimes. There is the classic work of
Arnowitt, Deser and Misner (ADM) [2] which defines a
Hamiltonian for asymptotically flat spacetimes. The later
work of Regge and Teitelboim [3] introduces the conserved
charges as boundary terms that are required for a proper
variational formulation of the problem. For spacetimes
which are asymptotically Anti-de-Sitter (AdS) (or asymp-
totically locally AdS), one can find plenty of energy defi-
nitions given e.g. by Abbott-Deser [4,5], Ashtekar-Magnon
[6], Hawking-Horowitz [7], Aros et al. [8], Cai-Cao [9],
Henneaux-Teitelboim [10], Henningson-Skenderis [11]
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and Balasubramanian-Kraus [12]. [See also Barnich et al.
[13,14] for conserved charges in generic gauge theories,
including gravity.] Unfortunately, each one of these meth-
ods have strong and weak points. A recent detailed com-
parison of some of these definitions was nicely carried out
by Hollands et al. [15]. Therefore, when an ‘‘interesting’’
solution for a gravity theory is found, one wonders about
the conserved charges, and more specifically, the mass of
that solution computed by the above methods. Although
these methods frequently agree, one can easily find ex-
amples where they do not [See e.g. [16] in which it was
shown that the existence of long-range scalar fields leads to
discrepancies between the Abbott-Deser and Ashtekar-
Magnon definitions for certain spacetimes.]

Recently Clarkson and Mann [17] found new solitons in
cosmological spacetimes that have quite interesting prop-
erties: They resemble the Eguchi-Hanson [18] metrics with
AdS=Zp asymptotics. For the case of a negative cosmo-
logical constant, these solutions have lower energy than the
global AdS=Zp spacetime. Clarkson and Mann computed
the energy of the 5-dimensional solution using the bound-
ary counterterm method of Henningson and Skenderis
[11]. The authors of [17] also claimed that these solutions
have the lowest energy in their asymptotic class. In fact, by
now, we are used to such novel properties of AdS space-
times: Horowitz and Myers [19] provided us with the first
example of a negative mass soliton, called the ‘‘AdS soli-
ton’’. These negative energy solutions do not cause any
instabilities, as in the case of a scalar field of negative
mass-squared satisfying the Breitenlohner-Freedman [20]
bound. The stability of negative mass solitons in the con-
text of the AdS=CFT correspondence is expected since the
field theory vacuum is stable.

In this paper, we shall compute the masses of both the
AdS soliton and the recently found Eguchi-Hanson (EH)
solitons using the Abbott-Deser [4] procedure which can
be quite easily generalized to higher curvature models of
gravity [5]. We would like to stress that, unlike the bound-
ary counterterm approach which works for a given fixed
-1 © 2006 The American Physical Society
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dimension, our method applies to generic dimensions and
here we will compute the masses for arbitrary (odd) di-
mensions. However, before computing the charges, we will
first reconstruct the conserved charges for cosmological
Einstein’s theory formulated with the spin connection and
the vielbein instead of the metric. This is a straightforward,
yet a tedious task. Whenever fermionic fields are to be
taken into account, such as in supergravity theories, one
has to use the ‘‘first order’’ spin-connection formulation.
We believe that this provides an important motivation as to
why conserved charges in the latter formalism needs to be
worked out.

Before we move on to the bulk of the paper, we would
like to mention that observations point out that the
Universe might have a small positive cosmological con-
stant. For this very exciting possibility, in principle, one
would like to study various properties, such as conserved
charges, stability, etc. of de Sitter (dS) spacetimes as
opposed to the AdS spacetimes. But ironically, most of
the recent theoretical progress (such as the remarkable
AdS=CFT dictionary) has been on spacetimes with a nega-
tive cosmological constant. Global properties of the latter
has little, if any, resemblance to the former: Therefore, it is
not exactly clear how one would make use of the enormous
amount of information gained in negatively curved space-
times. This is a serious challenge but it does not deter us
from studying the AdS spacetimes. In fact, for ‘‘small’’
objects (black holes and so on) that do not change the
location of the cosmological horizon, we want to empha-
size that, our formulas will define mass within the cosmo-
logical horizon in de Sitter spacetimes. Moreover they are
also easily modifiable to apply to the higher curvature
models, such as the Gauss-Bonnet theory.
II. CONSERVED CHARGES IN
ASYMPTOTICALLY AdS SPACETIMES

In this section, we shall first briefly recapitulate the
construction carried out in Abbott-Deser [4] and Deser-
Tekin [5] papers and then redrive the surface integrals for
conserved charges in cosmological Einstein theory using
the modern language of differential forms. As mentioned
above, the charge definition that we are about to present is
neither unique nor, in general, in agreement with some
other definitions for all spacetimes. However, we would
like to point out that our definition is quite intuitive and
physical: the background spacetime (the global AdS) has
zero energy and the asymptotically AdS spacetimes have
energy measured with respect to the background. In some
sense, an observer sitting at the boundary of the spacetime
(that is, at the spatial infinity), sees a black hole as a
perturbation to the background spacetime. Let us formulate
this idea by splitting the metric into a background plus a
perturbation:

g�� � �g�� � h��; (1)
064020
where g�� is a solution to a certain gravity theory coupled
to matter sources. Note that this theory need not be
Einstein’s theory: It could be a complicated higher curva-
ture gravity model. What we require from this model is
that, it either come from a proper local Lagrangian or it be
endowed with the Bianchi identities and covariant conser-
vation of the matter tensor (or identically, the left hand
side— i.e. the geometry part—of the equations of mo-
tions). In what follows ‘‘barred’’ quantities refer to the
background spacetime that is a solution to the equations
of motion without a source term. We assume that there are
background Killing vectors (to be able to define energy,
one of these vectors has to be a timelike vector everywhere)

�r �
���a�� � �r� ���a�� � 0: (2)

Having the Killing equation at our disposal, we can con-
struct partially conserved vector currents out of the cova-
riantly conserved tensor currents of the linearized
equations. For example, this procedure (worked out in
detail in [5]) leads to the following conserved charges in
cosmological Einstein theory

Q�� ��� �
1

4�D�2GD

Z
@M
dSif ��� �r�hi� � ��� �rih��

� ��� �rih� ��i �r�h� h�� �ri ��� � h
i� �r� ���

� ��i �r�h
�� � ��� �r�h

i� � h �r� ��ig; (3)

where h � h�� �g�� and the gravitational charge has been
normalized by the D-dimensional Newton’s constant GD
and the solid angle of a �D� 2�-sphere SD�2. Recently,
this formula was successfully applied [21] to the
D-dimensional Kerr-AdS black holes [22] and a modified
version of it [23] was used to calculate the charges of the
BTZ black hole [24] and the charges of the only known
supersymmetric solution to the topologically massive grav-
ity [25] in D � 3 [26]. If there are higher curvature terms
present, the construction gets modified as worked out in
detail in [5] and outlined below.

We now turn on to a detailed computation of the con-
served gravitational charges formulated with the spin con-
nection and the vielbein. As already mentioned in the
introduction, such a formulation is forced on us in the
presence of fermions, for example, in any supergravity
theory. [As a side note, recall that if the vielbein is assumed
to be invertible (nondegenerate), then the spin-connection
formulation is equivalent to the metric formulation.]

Consider a generic gravity theory coupled to a cova-
riantly conserved bounded matter source which is de-
scribed by the following ‘‘Einstein‘‘ equations:

Ga �� ? ea � �Ta: (4)

Here Ga is the ‘Einstein �D� 1�-form’ of a local generic
gravity action, ? is the Hodge star operator and � is the
relevant ‘‘coupling constant‘‘ of the model under investi-
gation. Suppose now that the metric tensor g
-2
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g � �abe
a � eb;

is decomposed such that the ‘‘full‘‘ orthonormal coframe
1-forms ea can be written as the sum of a ‘‘background‘‘
orthonormal coframe �ea [which satisfies (4) for Ta � 0]
plus a ‘‘deviation‘‘ piece as

ea � �ea � ’ab �eb; (5)

where the 0-forms ’ab are assumed to vanish sufficiently
rapidly at ‘‘infinity‘‘. [Note that the decomposition de-
scribed by (5) is always possible given a metric tensor g
and a choice for the ‘‘background‘‘ coframes �ea, since one
can always write ea � �ea �  a�dx� and dx� � �E�b �eb,
for some 0-forms  a� and �E�b, which means ’ab �
 a� �E�b in (5).] One can now separate the field Eqs. (4)
into a part linear in ’ab plus all the remaining nonlinear
parts so that, one obtains

�Ga�’
b
c� � ��a;

the ‘‘linearized‘‘ version of the field Eqs. (4). Here �Ga�’bc�
is a �D� 1�-form that involves only terms linear in the
deviation parts ’bc and depends only on the background
coframes �ea (and, of course, the differential geometric
structures that they define); the �D� 1�-form �a naturally
contains all the nonlinear terms in ’bc plus the contribu-
tions from the original matter source Ta.

It can be shown that due to the background Bianchi
identity and the background gauge invariance, there exists
a set, denoted by the index I, of Killing vectors ��a

�I�

�Da
��b
�I� � �Db

��a
�I� � 0; (6)

for the background geometry described by �ea. Here �Da �
��a �D; ��a denotes the interior product operator with respect
to a ‘‘background‘‘ frame vector that acts on the space of
forms and creates a �p� 1�-form out of a p-form so that,
e.g. ��b �ea � �b

a; �D denotes the covariant derivative opera-
tor with respect to the Levi-Civita connection 1-forms �!a

b
of the background coframes that satisfy the Cartan struc-
ture equations d �ea � �!a

b ^ �eb � 0. Since �D�a � 0 by the
background Bianchi identity, it readily follows that one
also has

�D��c ��c
�I�� � d��c ��c

�I�� � 0:

However, using the fact that the torsion 2-form vanishes,
i.e. �D �ea � 0, and defining �c � �ca �? �ea for some 0-forms
�ca, one can come up with a conserved density current that
leads to the following conserved Killing charges

Qa� ���I�� �
Z
M

~?1�ca ��c
�I� �

Z
@M
dSiqai�I�: (7)

Here M is a spatial �D� 1�-dimensional hypersurface, ~?1
is the oriented ‘‘volume‘‘ element of M, @M denotes its
�D� 2�-dimensional boundary, we use dSi to denote the
corresponding ‘‘area‘‘ element of @M, and qai�I� is obtained
064020
from �Ga�’
b
c� whose explicit form depends on the theory

being studied. Here the index i ranges over 1; 2; . . . ; D� 2
and we have used Stokes’ theorem (and the usual accom-
panying assumptions of it) to obtain this final form for the
Killing charge. [Note that to apply the Stokes’ theorem, it
is of course necessary to write �ca ��c

�I� � �Dcq
ac�I�, which is

the tricky part but holds for all ‘‘physically reasonable‘‘
theories that we know.]

Let us be more explicit now and consider the most
‘‘relevant’’ example of the D-dimensional cosmological
Einstein theory for which the vacuum equations read

�
1

2
Rab ^ ?eabc �� ? ec � 0: (8)

Here eabc is a shorthand notation for ea ^ eb ^ ec and we
use analogous expressions for eab, etc. Vacuum equations
are solved by a space of constant curvature which satisfies

�R abcd �
2�

�D� 1��D� 2�
��ac�bd � �ad�bc�;

�Rab �
1

2
�Rabcd �ecd �

2�

�D� 1��D� 2�
�eab;

�R � ��b ��a �Rab �
2�D
D� 2

:

(9)

The ‘‘linearization‘‘ process of (8) coupled to a matter
source in the sense described above involves the use of
many nontrivial identities and somewhat complicated cal-
culations. We present these technical derivations in
Appendix A and proceed with the explicit form of the first
integrand in (7) which reads

��c�ca �
�
� �Dc

�Db’cb � �Dc
�Dc’bb �

2�

D� 1
’cc

�
��a

�
2�

D� 1
��c’ac � ��c �Dc �Da’bb � ��c �Dc �Db’ab

� ��c �Db
�Db’ac � ��c �Db

�Da’bc (10)

for a given Killing vector ��c of the ‘‘background‘‘. Here,
and in what follows, we suppress the further use of the
index I which labels the Killing vectors of the background
geometry.

The nontrivial task to fulfill now is to put everything on
the right hand side of (10) in the form �Dc(something) and
the details of this are given in appendix B. The outcome of
this procedure is

�� c�
ca � �Dc�� ��a �Db’cb � ’

bc �Db
��a � ’bb �Dc ��a

� ��a �Dc’bb � ��c �Da’bb � ��c �Db’ab

� ��b �Dc’ab � ’ab �Dc ��b � ��b �Da’cb�; (11)

which explicitly yields the following conserved Killing
charge corresponding to (7)
-3
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Qa� ��� �
1

4�D�2GD

Z
@M
dSi�� ��a �Db’ib � ’

bi �Db
��a

� ’bb �Di ��a � ��a �Di’bb � ��i �Da’bb � ��i �Db’ab

� ��b �Di’ab � ’ab �Di ��b � ��b �Da’ib�: (12)

As expected, this is similar in form to the metric formula-
tion (3), but the details were needed to be worked out
carefully since the spin-connection and the metric formu-
lation are quite distinct in spirit. Had we considered a
generic higher curvature model in the spin-connection
formulation, the charges would have been modified along
the lines of [5]. Here, we will not do that computation, but
simply say that, for quadratic gravity models, such as the
Gauss-Bonnet or any R2 theory, a nontrivial factor (de-
pending on the coefficients of the higher curvature terms
and the cosmological constant) will multiply the charge in
(12).
III. COMPUTATION OF THE CHARGES FOR THE
SOLITONS

A. AdS soliton

Our first example is the ‘‘AdS Soliton’’ of Horowitz-
Myers [19]

ds2 �
r2

‘2

��
1�

rp�1
0

rp�1

�
d�2 �

Xp�1

i�1

�dxi�2 � dt2
�

�

�
1�

rp�1
0

rp�1

�
�1 ‘2

r2 dr
2; (13)

which was obtained by the double analytic continuation of
a near extremal p-brane solution. Here xi (i � 1; . . . ; p�
1) and the t variables denote the coordinates on the
‘‘brane’’ and r � r0. To avoid a conical singularity at r �
r0, � necessarily has a period 	 � 4
‘2=�r0�p� 1��. Its
energy was computed in [19] using the method of [7]. Here
we compute the energy using the method described so far.
The background (r0 � 0) is the usual globally AdS space-
time in the horospherical coordinates, with the timelike
Killing vector

�� � � ��1; 0; . . . ; 0�: (14)

Defining the metric perturbation as outlined above and
carrying out the integrations, we have

E � �
VD�3


�D� 1��D�2GD

rD�2
0

‘D�2 ; (15)

where VD�3 is the volume of the compact dimensions.
Upto trivial charge normalizations, our result matches
that of [19], which uses the energy definition of
Hawking-Horowitz [7].
064020
B. Eguchi-Hanson solitons

Recently, Clarkson and Mann [17] found very interest-
ing solutions to the odd dimensional cosmological (for
both signs) Einstein equations. These solutions resemble
the even dimensional Eguchi-Hanson metrics [18]—thus
the name Eguchi-Hanson solitons—and asymptotically
approach AdS=Zp, where p � 3. As shown in [17], these
solutions have lower energy compared to the global AdS
spacetimes (or the global AdS=Zp spacetimes). The ener-
gies of these solutions (for the case of 5 dimensions) were
computed in [17] with the help of the boundary counter-
term method [11,12]. It is important to note that boundary
counterterm method needs to be worked out for a given
fixed dimension. Here, we use the prescription outlined in
the previous section and find the energy of the EH solitons
for generic odd dimensions. For a detailed description of
the metrics, we refer the reader to [17]. We simply quote
their result: the EH soliton reads

ds2��g�r�dt2�
�

2r
D�1

�
2
f�r�

�
d �

X�D�3�=2

i�1

cos�id�i

�
2

�
dr2

g�r�f�r�
�

r2

D�1

X�D�3�=2

i�1

�d�2
i �sin2�id�2

i �; (16)

and the metric functions are given by

g�r� � 1	
r2

‘2 ; f�r� � 1�
�
a
r

�
D�1

: (17)

In the AdS case, to remove the stringlike singularity at r �
a, one finds that  has a period 4
=p and there is a
constraint on the parameter a:

a2 � ‘2

�
p2

4
� 1

�
: (18)

The background is obtained simply by setting a � 0 in
(17). The details of the energy (the charge for ��� �
��1; 0; . . . ; 0�) computation is rather lengthy and not par-
ticularly illuminating to present here. Instead, we will only
write down our result. For convenience, we define

E� ��� �
1

4�D�2GD

Z
@M
dSrE� ���;

and only present E� ���, in the r! 1 limit:

lim
r!1

E� ��� � �
2aD�1

‘2�D� 1��D�1�=2

Y�D�3�=2

i�1

sin�i: (19)

After the angular integrations are carried out, one obtains
the energy of the EH soliton in generic odd dimensions

E � �
�4
��D�1�=2aD�1

p‘2�D� 1��D�1�=2�D�2GD

: (20)

Specifically, when D � 5, one finds
-4
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E � �
a4

4p‘2G5

: (21)

We note that this result differs from that of [17] in two
respects: one of which is a trivial numerical factor that can
be attributed to normalization of the conserved charges
(12); the second, and the more important one, is the pres-
ence of an additive constant which is exactly equal to the
energy of the AdS=Zp spacetime. Recall that in the formal-
ism we use, the background always has zero energy, unlike
the boundary counterterm method for which it has a finite
energy.
IV. CONCLUSIONS

In this paper, we have constructed the conserved charges
for asymptotically AdS spacetimes using the spin connec-
tion and the vielbein formalism of gravity and then com-
puted the gravitational energies of the AdS soliton and the
recently found EH solitons. For the latter, our method
provided us with a computation of the masses for generic
odd dimensions, unlike the boundary counterterm method
which was employed only for D � 5. These solitons all
have lower energies than the global AdS or the global
AdS=Zp spacetimes.

We would like to stress that the Abbott-Deser [4,5]
method, which we used here, is a powerful tool that can
have a wide range of applications. For example, one can
use it to compute the masses of the new charged solutions
[27–29] in AdS spacetimes that have nontrivial topology.
Here, we only consider two examples that were presented
in [27]. In D � 4, the ‘‘Taub-NUT-Reissner-Nordström’’
solution reads

ds2 � �F�r��dt� 2N cos�d��2 �
dr2

F�r�

� �r2 � N2��d�2 � sin2�d�2�; (22)

where N is the nut charge and

F�r� �
r4� �‘2� 6N2�r2� 2m‘2r� 3N4� ‘2�q2�N2�

‘2�r2�N2�
:

(23)

To find the energy of this solution, the correct background
(that has zero energy) needs to be carefully chosen. If we
naively set m � q � 0 and the nut charge N � 0, then the
energy of the solution with nonzero m, q, N diverges. This
is to be expected since N � 0 solution is not in the same
topological class as that of the N � 0 solutions. The back-
ground has to be chosen as m � q � 0 but N � 0 as was
shown by Deser-Soldate [30] in the case of the (asymptoti-
cally locally flat) Kaluza-Klein monopole. In the light of
these arguments, using (12) one gets

E �
m
G4
: (24)
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In D � 6, the metric, for the details of which we refer to
[27], reads

ds2 � �F�r��dt� 2N cos�1d�1 � 2N cos�2d�2�
2

�
dr2

F�r�
� �r2 � N2��d�2

1 � sin2�1d�
2
1

� d�2
2 � sin2�2d�2

2�; (25)

where now

F�r��
q2�3r2�N2�

�r2�N2�4
�

1

3‘2�r2�N2�2

‘2��3N4�6mr

�6N2r2�r4��15N6�45N4r2�15N2r4�3r6�:

Once again the correct background is found by settingm �
q � 0 but N � 0, and the energy is

E � 12
m
G6
: (26)

In both cases, the electric charge q does not appear in the
total energy just like in the case of ordinary Reissner-
Nordström solution.
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APPENDIX A: THE DERIVATION OF (10)

In this Appendix, we present the technical calculations
that lead to (10).

The interior product operator satisfies �be
a � �b

a,
which implies that ��b is related to �b by

�b � ��b � ’b
c ��c (A1)

upto terms first order in ’ab. Moreover, substituting (5) in
the defining relation of the Hodge operator

?ea �
1

�D� 1�!
abc...de

b ^ ec ^ . . . ^ ed

�
1

�D� 1�!
abc...de

bc...d;

yields

?ea � �? �ea �
1

�D� 2�!
abc...d’

b
p �epc...d

� �? �ea � ’bp �ep ^ �? �eab

in terms of the Hodge operator �? of the ‘‘background‘‘.
This identity can also be generalized to
-5
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?eabc � �? �eabc � ’dp �ep ^ �? �eabcd

in a straightforward fashion. When the Cartan structure
equations Dea � dea �!a

b ^ e
b � 0 are solved for the

Levi-Civita connection 1-forms, one finds

!a
b �

1

2
��bde

a � �adeb � e
c��a�bdec��:

Since dea � d �ea � d’ab ^ �eb � ’abd �eb, one obtains (us-
ing (A1) and (5)) that

�bdec � ��bd �ec � ���bd’ck� �ek � d’cb � ’ck���bd �ek�

� ’b
k���kd �ec�

and

�a�bdec � ��a ��bd �ec � ��bd’ca � ��ad’cb � ’ck���a ��bd �ek�

� ’b
k���a ��kd �ec� � ’

ak���k ��bd �ec�

up to first order ‘‘deviation‘‘ terms. Keeping in mind that
the ‘‘background‘‘ Levi-Civita connection 1-forms satisfy
�D �ea � d �ea � �!a

b ^ �eb � 0, and using the fact that
�D’ac � d’ac � �!a

k’
k
c � �!k

c’ak, one thus finds

!a
b � �!a

b � �ec
 �Db’ac � �Da’bc�

after some lengthy but straightforward calculations.
Finally the defining expression Rab � d!ab �!ac ^!c

b
yields that the curvature 2-forms of the ‘‘background‘‘ and
the ‘‘full‘‘ geometry are related via

Rab � �Rab � �ec ^ �D� �Db’ac � �Da’bc�:

When all of these preliminary results are carefully used
in (8), one obtains the following expression for the ‘‘line-
arized‘‘ energy-momentum tensor of the cosmological
Einstein theory:

�c � �
1

2
�Rab ^ ’dp �ep ^ �? �eabcd �

1

2

 �D� �Db’ak

� �Da’bk�� ^ �ek ^ �? �eabc ��’bp �ep ^ �? �ecb: (A2)

Let us now examine the terms in �c (A2) individually.
Using (9), the fact that

�e abp ^ �? �eabcd � �D� 3� �epa ^ �? �eacd

� �D� 3��D� 2� �ep ^ �? �ecd;

one finds for the first term on the right hand side of (A2)
that

�
1

2
�Rab ^ ’dp �ep ^ �? �eabcd � ��

�
D� 3

D� 1

�
’bp �ep ^ �? �ecb;

which can be added to the last term in (A2) to yield

�
1

2
�Rab ^ ’dp �ep ^ �? �eabcd ��’bp �ep ^ �? �ecb

�
2�

D� 1
�’bb �? �ec � ’bc �? �eb�;

where we have also used �ep ^ �? �ecb � �pb �? �ec � �pc �? �eb.
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The middle term on the right hand side of (A2) can be
simplified by first noting that it can be written as

�
1

2

 �D� �Db’ak � �Da’bk�� ^ �ek ^ �? �eabc

�
1

4
� �Dp

�Da’bk � �Dp
�Db’ak� �e

pk ^ �? �eabc �
1

4

�� �Dk
�Da’bp � �Dk

�Db’ap� �epk ^ �? �eabc

and this in turn can be further reduced by the fact that

�e pk ^ �? �eabc � ��
k
b�

p
a � �

k
a�

p
b� �? �ec

� cyclic terms in �a; b; c�:

Using this, one finally obtains for the middle term on the
right hand side of (A2) that

�
1

2

 �D� �Db’ak � �Da’bk�� ^ �ek ^ �? �eabc

� � �Da
�Da’bb � �Da

�Db’ab� �? �ec � � �Dc
�Db’ab

� �Dc
�Da’bb � �Db

�Da’bc � �Db
�Db’ac� �? �ea:

Combining all of these results finally gives

�c � �ca

�
� �Dp

�Db’pb � �Dp
�Dp’bb �

2�

D� 1
’pp

�
�? �ea

�

�
� �Dc

�Da’
b
b �

�Dc
�Db’ab � �Db

�Db’ac

� �Db
�Da’

b
c �

2�

D� 1
’ac

�
�? �ea

for the ‘‘linearized‘‘ energy-momentum tensor of the
D-dimensional cosmological Einstein theory. Hence (10)
readily follows from this expression for �c.
APPENDIX B: THE DERIVATION OF (11)

In this appendix, we show the details of how (11) is
obtained from (10). For this purpose, first note the follow-
ing identities:

Since ��a is a Killing vector, it immediately follows from
the Killing Eq. (6) that �Da

��a � 0. Moreover, the very
definition of the Riemann tensor implies that

� �Da
�Db � �Db

�Da� ��c � �Rabcd ��d:

This can be used together with the key property of the
Riemann tensor [This identity can easily be derived from
D�a � Rab ^ e

b � 0 where �a � �D �ea denotes the torsion
2-form.].

�R 
abc�d � 0 and hence �R
abc�d ��d � 0;

to obtain �Db
�Dc

��a � �Racbd ��d. This further simplifies by
making use of (9) and leads to the useful identity that

�Db
�Dc

��a �
2�

�D� 1��D� 2�
��ab ��c � �bc ��a�: (B1)
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Consider, for example, the first term in (10). One has

�� a �Dc
�Db’cb � �Dc� ��a �Db’cb� � �Db�’cb �Dc

��a�

� ’cb� �Db �Dc
��a�

� �Dc� ��a �Db’cb � ’
bc �Db

��a�

�
2�

�D� 1��D� 2�
�’ca ��c � ’cc ��a�:
064020
We have carried the ��a term ‘‘inside‘‘ the derivative op-
erator in the first line and used (B1) to obtain the second
line. One follows similar steps for the other terms in (10),
and noting that all terms of the type ’ab ��b and ’bb ��a

cancel out separately along the way, the final expression for
(11) is found.
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