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Energy in generic higher curvature gravity theories
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We define and compute the energy of higher curvature gravity theories in arbitrary dimensions. Generically,
these theories admit constant curvature va@ven in the absence of an explicit cosmological congtamid
asymptotically constant curvature solutions with nontrivial energy properties. For concreteness, we study
quadratic curvature models in detail. Among them, the one whose action is the square of the traceless Ricci
tensor always has zero energy, unlike conforiivsieyl) gravity. We also study the string-inspired Einstein-
Gauss-Bonnet model and show that both its flat and anti—de Sitter vacua are stable.
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I. INTRODUCTION gravity model considergds rather simple and straightfor-
ward, although its applications to specific gravity models re-
Recently, de SittefdS) and anti—de SittefAdS) spaces quire care, in choosing correct vacua, with global symme-
have received renewed interest both in string thgaéwgS  tries and in converting “volume” to “surface” integrals.
-conformal field theory(CFT) correspondendeand in cos-  Historically, the first application of this procedure was in
mology where a positive cosmological constant may have=instein’s gravity for flat backgrounds with its Poincagem-
been observed. This motivates a detailed study of energietries[“Arnowitt-Deser-Misner (ADM) mass” [3]]. The
about these vacua, for systems that also involve higher cugecond step was to tf{8)dS vacua of cosmological Einstein
vature terms, such as naturally arise in string theory andéheory[“Abbott-Deser(AD) mass”[2]].
other quantum gravity models. In this paper, we define and The outline of the paper is as follows: In Sec. Il, we
compute the global chargésspecially energyof asymptoti- reexamine the AQ2] Killing charge for the cosmological
cally constantincluding zer9 curvature space-times for ge- Einstein theory and the energies of its SchwarzsctAlitS
neric gravitational models. (collectively “SdS”) solutions. Section Il is devoted to the
In a recent Lettef1], which summarized some of the derivation and computation of the Killing charges in generic
present work, we defined the global charges primarily in fourquadratic theoriegwith or without Einstein termsas well as
dimensional quadratic theories. In this paper we extend thdheir various limits, particularly in Einstein-GB models. In
discussion in several directions: We first present a reformuSec. 1V, we discuss the purely quadratic zero energy theory
lation of the original definitior[2] of conserved charges in constructed from the traceless Ricci tensor. Section V in-
cosmological Einstein theory; then we derive the generi¢ludes our conclusions and some open questions. The Ap-
form of the energy for quadratic gravity theoriesDrdimen- ~ pendix collects some formulas useful for linearization prop-
sions and specifically study the ghost-free low energy stringerties of quadratic curvature terms abodjdS backgrounds.
inspired model: Gauss-BonngbB) plus Einstein terms. We
also briefly indicate how higher curvature models can be Il. REFORMULATION OF AD ENERGY
similarly treated. ) ) )
We will demonstrate that, among purely quadratic theo- N thls_ section, we reformulate the AD constructif2l _
ries, the one whose Lagrangian is the square of the traceled§d obtain new and perhaps more transparent surface inte-
Ricci tensor has zero energy for @l about its asymptoti- drals for energy in cosmological Einstein theory. One of the

cally flat or asymptotically constant curvature vacua, unlike féasons for revisiting the AD formulation is, as will become
for example, conformalWeyl) gravity in D=4. clear, that in the higher curvature models we shall study in

detail, the only non-vanishing parts of energy, for asymptoti-

_usscally SdS spaces come precisely from AD integrals, but with

(law’ and the" presence of asymptotic Killing symmetries. €Ssential contributions from the higher terms.

More explicitly, in any diffeomorphism-invariant gravity First Iet us recapitulaitl] how conserved charges arise
ofn @ generic gravity theory coupled to a covariantly ¢

on-
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with h=§’”hw and ﬁ=a’“’€#€y. The energy momentum-

tensor(9) is background covariantly constan? (T#"=0),
n as can be checked explicitly.
This procedure lef2] to the following energy expression:

tives 1
nd  E@-g g f dSV=g{€, VK"KV, ) (1D)
ely
_'tl'he superpotentiak#*"# is defined by
i

admits a set of

E[EMBH Va+5”aHMﬁ_EILVH aﬁ_aaﬁHﬂv],

1—
Hev=her— Sgh, (12

conserved vector density curre
It has the symmetries of the Riemann tensor. In converting

nt,
m (5)  the volume to surface integrals, we follow a somewhat dif-

ferent route, which will be convenient in the higher curvature

Therefore, the conserved Killing charges are expressed ascases. Using Eqg9), (10), straightforward rearrangements
of terms, and the aforementioned antisymmetry, we can
move the covariant derivatives to yield

Q@)= | e x—greE- [ asFe. @)
M Y
4A
B e gy O R g
Let us first apply the above procedure to c.:osmological 4

Einstein theory to rejoii2]. Our conventions are: signature

(=, +,+,...+),
The Einstein equations

1
Ruv~ 50R+AQ,,=0, @

+hvegr). (13

lling

‘Riemann, Ricci and scalar curvature are —_i
@
Rrs™(p-2)(D- 1) A O™ Gus): -—g-m
@ 2DA
Ru=p—gAw: Repg—5 ®) T+ NTTE, — VR, 4 BV, - T
Linearization of Eq(7) about this background yields “ (14

tion
in specific coordinates for asymptotically
(A)dS spaces, let us check that it is in fact backgro

und
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e 19
(19 [ )

To show thaT " is invariant, first note thaR,_ is * as expected. On the other
hand, for d =0. This is, however, misleading since

5 in dS we should real
—g#’S,RY — — AQgh? = om-
SRR, pp e, =0 (19 deed, if we naively include the effect of a larggas chang-
ing the horizon to *ry/r—r2/12=0, thenE(r) itself di-
This leads toﬁgg}w:[Z/(D—Z)]A 6:h,, and eventually to verges] But, we derived the energy formula using
8,Q#=0: the Killing charge is indeed background gauge-asymptotic Killing vectors, so the only way to make sense of
invariant. Another test of Eq14) is that, in the limit of an  the above result for asymptotically dS spaces is to consider
asymptotically flat background, we should obtain the ADM the smallr limit, which then givesE=M [2]. In the limit of
charge. In that case, we may write the timelike Killing vectora vanishing cosmological constaft:>o; the ADM energy
asé,=(10). The time component of Eq14) reduces to the is of course recovered as-.
desired result: The above argument easily generalizeDtalimensions,
where one obtains

1 L
Q0=MADM=mfE ds {gh"—d'h} (17 -=n (20)

in terms of Cartesian coordinates. t be
Having established the energy formula for asymptoticall
(A)dS spaces, we can now evaluate the energy of SdS solu- (Finally, It iS note that'analogous computations can also

tions. First, we must recall that the existence of a cosmolog S
cal horizon is an important difference between dS and AdS

|

cases. In the former, the background Killing vector stays
time-like only within the cosmological horizofWe will not -
go into the complications for physics of this horizon, since it (21)

is a well-known and ongoing problem. |&], it was simply

assumed that interesting system should be describable withfgrWwhich the energy i
the horizon. For related ideas g&d.) For small black holes,

whose own event horizons lie well inside the cosmologicakhe original result$5].
one, Eq.(14) provides a reasonable approximation.

SdS reads

Ill. STRING-INSPIRED GRAVITY

Y 10 we will later add an explicit cosmological constant term in the
he discussion. Note also that the normalizationsagf3 differ from
those off1].
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which in our conventions issee alsd8])

|

I

already dealt with in the previous section. _ rm
. The relatively
cumbersome last term can be written as a surface plus extra

Nt terms:
pped.

"EOGL VAT G BTG - GV E GV
HOPTEFENTGU-GIVTE,. (28

sing the definition of the Killing vector, and its trace prop-
rty,

T
\ i

Following the procedure outlined in the previous section
and using the formulas in the Appendix, we exp-f el

‘momentum tensor as 2A
V VB§V V,Bag,u —(gva§B gaﬁgv)
.-d-- (D-2)(D-1)
D=2 Tb-1 o
Déu=— 5% (29
along with the identity
—_ 2AD _
&V, V4G ZW&;Q’L”"' p-1¢ R
(30

2This overall sign change is also shared by the model’s small

(25 oscillations about the AdS vacuum.
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iNote again the
sign change of the “Einstein contribution” as explained be-

(3D) “. (36)

For brevity we have left the AD part as a volume integral From Eq.(35), the asymptotically SdS solution seemingly
whose surface form we know is given by H@4); note that  has negative energy, in the Einstein-GB model:
v does not appear explicitly since it has been tradedAfor

through the relatiori24).
In the above analysis, there was no bare cosmological

term in the action. Clearly, this need not be the case: we can

add one, say PdPxy—gA,/x. The A, contributes to the AVRIlETHhISTiSTOf CoUrSe correct in terms of the usual 'sds
overall effective cosmological constant\, which now is
given by

37

U
 4f(a,B,y)K
X {1+ J1+8«kf(a,B,y) A} (32
(D—-4) y(D—4)(D-3)
f(a ﬂ ’y)—(D 2)2(D(1+B)+ m

(39

If >0, as in Einstein-GB theory, the effective cosmologica_
constantA is smaller than the “bare” oné\: thus stringy ent asymptotics: Schwarzschild and Schwarschild-Ads er-

corrections(at quadratic orderreduce the value of the bare
cosmological constant appearing in the Lagrangian. Given
that A is arbitrary, there is a bound (8\,f=—1) on these
corrections since the effectivé becomes imaginary other-
wise.

%ln D=3, the GB density vanishes identically and the energy
. (34) expression has the same form of the=4 model, with the differ-
' ence thatr, comes from the metri€21).
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(AEeds ol energy expressioai) and not'Simply the"AD pure quadratic models in ab, for both asymptotically flat
(formula which is valid only for cosmological Einstein theory. and(A)dS spaces. For flat backgrounds, the higher derivative

terms do not change the form of the energy expressions. On

Now from Eq.(40), we have
the other hand, for asymptoticallfyA)dS backgrounds
(which are generically solutions to these equations, even in
0 +0(r}),  4)

the absence of an explicit cosmological constetihie energy
expression$31) essentially reduce to the AD formulap to
(WhesesighlisioppositeltothatiofthellisialSasSIThiSSigh jusiigher order corrections that vanish for space-times that as-
thgmptotically approaclA)dS at least as fast as SdS spaces

, Among quadratic theories, we have studied the string-
GBnspired Einstein-GB model in more detail. Just like the oth-

(effects are taken into account also in the energy definitioners, this one, in the absence of an explicit cosmological con-
isstant, has both flat and AdS vacua, the latter with specific
F (negative cosmological constants determined by the New-
ton’s constant and the GB coefficient, the latter sign being
IV. ZERO ENERGY MODELS fixed from the string_expansion to be p(_)sitivg. Th_e explicit
spherically symmetric black hole solutions in this theory
In D=4, every quadratic curvature theory, i.e. amy, 8) consist of two branchefl0]: asymptotically Schwarzschild
combination, is scale invariant. These models were studied iapaces with a positive mass parameter or asymptotically
[12] in terms of the slightly different parametrization Schwarzschild AdS spaces withnegativeone. The asymp-
totically Schwarzschild branch has the usual positive ADM
energy. Using the compensation of two minus signs in the
solution and in the correct energy definition, we noted that
the AdS branch has likewise positive energy and that the AdS
whereC,,,,, is the Weyl tensor. Using the equivalent of the vacuum was a stable zero energy state.
ADM energy for the asymptotically flat solutions, it was  Amusingly, we instead identified a unique, purely qua-
shown that this energy vanished for all of them. As discussedratic theory with zero energy for all constaier zerg cur-
in [1], with our definition of energy, this statement is correct,vature backgrounds. That, one such model must exist, is al-
but simply reflectdat Einsteinian levelthe Newtonian im-  ready clear from the fact that each term in
possibility of having asymptotically vanishing solutions of
V4¢=p. This property of higher derivative gravity is well
understood 13]. It has deeper consequences such as viola- |=f d°x=g{aR?+ BRZ, + ¥(R’,,,—4R%,+ R?)},
tions of the equivalence principle: massive sources here have (43)
no gravitational mass. Violations of the equivalence principle

are not unheard OT and occur already gt the simple level 0éontributes linearly to E. The condition thé&)dS be a so-
scalar-tensor gravity. In the asymptoticalpp)dS branch, lution, with arbitrary cosmological constant, is
however, energy no longer vanishes: Even pure conformally ' ’

invariant Weyl theory has finite energy.

Interestingly, there is one purely quadratic theory which
doeshave vanishing energy iall dimensions, for asymptoti-
cally flat or (A)dS vacua. It has actioy‘lde\/—gRM;RW,
where R,,=R,,—(R/D)g,,. This vanishing is obvious In all D, the zero energy models hav® ¢+ B)=0=y.
from Eq. (35), dropping the Einstein contribution: E is then While we have not yet understood what this result means
proportional to Da+ B). In addition to its zero-energy flat physically, we can at least argue in favor of its plausibility.
vacuum, the/A)dS branch is infinitely degenerate, having aFirst, note that this model is the only one that stays special in
1-dimensional moduli space denoted by the Schwarzschildll D, unlike either Weyl gravity, good only i®=4 or R?,
parameter,. For example, creating larger and larger blackscale invariant also only iD=4. A second argument is that
holes costs nothing in this theory. Of course, once an Einthis is the only quadratic theory that cannot be reformulated

s= f d*xy—g{aC,,,, C*"?+bR%} (42

1 ¥D-3)|
(D—4) W(Da-ﬁ-ﬂ)-FW =0. (44)

stein term is present, the energy is no longer zero. as Einstein plus mattéd 1], making it hard to expect any of
the others to have no energy.
V. CONCLUSIONS In this paper, we have only looked at constant curvature

vacua, but there may exist more general vacua with some
We have defined the energy of generic Einstein plus cosadditional structure. One example may be Weyl gravity, for
mological term plus quadratic gravity theories as well aswhich the most general spherically symmetric solution is

(14,19
“In [10], it was erroneously concluded th&t, was negative for 1 (2—3ab)b r2
the AdS branch, despite having obtained both the cofresgjative —Qgpo=—=1-3ab———+ar——; (45
sign of T#” and of course the correct solutig®9). Orr r |2
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a,b,l are integration constants. Birkhoff's theorem is valid 8A L
and this is the unique external solution. One choice of back- O(RyupoaRy P74 = me
ground might be to sét=0. This space is only asymptoti-
cally (A)dS, since for itR=—6a/r +1212. Our earlier re- 8A2
marks on the loss of “visibility” of matter source - mhw
contributions to E in higher derivative theories might lead
one to expect thar term to carry this information. However
this is not the case: the=0 geometry is a solution every- (R REPTa) — 8A R
where. npoa (D-1)(D-2) *

The framework for energy definition presented here can
clearly be applied to models with generic higher powers of 2DA .
curvature[1]. For any such theory that supports constant d(RR,,)= R';w+ 5 9.,RL
curvature vacua—and all but monomials in scalar curvature D-2 (D-2)
do so—it is just a matter of turning the crank to obtain its
energy. . 4N 4A2

5(R'u,RV(T)_ D_ZR/.LI/ (D_Z)Zh,uv
ACKNOWLEDGMENT

This work was supported by National Science Foundation 5 AN\

grant PHY99-73935. S(R.)=pg5R
APPENDIX , , . AA(D-3)

Here we list some useful linearization expressions about I(Ronpo 4R, + R = WRL
(A)dS for pure quadratic terms, using the conventions of Sec.
II; barred quantities refer to the background: oA

R- E(rp:RL _
novp # (D-1)(D—-2)

o 2A L
5( R,u.pvoRp ): mR,u.V

2A T R
BCENICE
+ 4n° h

(D-2)D-1) "

X(h,u.v_a,uvh)'
Finally, we compute the GB density of a cosmological space:

4ADA%(D-3)

B2 ADp2 p2_ " "
R R R= 51
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