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Abstract
We compute the energy and angular momenta of recent D-dimensional Kerr–
AdS solutions to cosmological Einstein gravity, using our invariant charge
definitions.

PACS numbers: 04.20.−q, 04.20.Cv, 04.20.Ha, 11.30.−j

1. Introduction

Rotating solutions of cosmological Einstein gravity in D dimensions, Rµν = (D − 1)�gµν ,
have been constructed recently [1, 2], extending earlier � = 0 solutions of [3], themselves
generalizations of the well-known D = 4 metrics of [4] and [5], and of [6] in D = 5.
These geometries provide a useful application of our recent generalized ‘conserved charge’
definitions, which are also extensions—of the original ADM [7], and AD [8] charges—to
cover wider classes of actions [9, 11]: we will compute the energy and angular momenta of
these new solutions.

Gravity theories have been historically endowed with a variety of seemingly different
charge definitions, with different degrees of applicability and coordinate invariance. This
topic has also seen much very recent activity, for example [12]. A summary and comparison
of some of them is given in [13] which also includes a computation of the charges for Kerr–
AdS black holes, using thermodynamic arguments; see also [14, 16]. Our results will agree
with those, but we emphasize that in a general context, certain coincidences between charge
definitions are suspect: for example, the frequently invoked ‘Komar’ charges, are in general
not applicable, being highly gauge dependent [17].

2. Mass and angular momenta of Kerr–AdS

Let us briefly recapitulate the formulations of [8, 9]. The field equations of any metric model
coupled to a (necessarily covariantly conserved) matter source τµν are

δI

δgµν

≡ �µν(g, R,∇R, . . .) = κτµν, (1)
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where �µν is an identically conserved tensor that can depend on curvatures and their
derivatives. Decompose the metric into the sum of a background ‘vacuum’, ḡµν (which
solves (1) for τµν = 0), plus a deviation hµν , not necessarily small, that vanishes sufficiently
rapidly far from the matter source: gµν = ḡµν + hµν . The field equations can be divided into
a part linear in hµν plus a non-linear remainder, which (with τµν) constitutes the total source
Tµν . If the background ḡµν admits Killing vectors ξ̄µ, obeying ∇̄µξ̄ν + ∇̄ν ξ̄µ = 0, then, up to
normalization factors (which we shall fix later), the conserved Killing charges are

Qµ(ξ̄) =
∫
M

dD−1x
√−ḡT µν ξ̄ν =

∫
�

dSiFµi. (2)

Here � is a D − 2-dimensional spacelike asymptotic hypersurface of the space M and Fµi is
an anti-symmetric tensor, whose explicit form is model dependent. For Einstein’s theory with
a cosmological constant,

Qµ = 1

4	D−2GD

∫
�

dSi{ξ̄ν∇̄µhiν − ξ̄ν∇̄ ihµν + ξ̄ µ∇̄ ih − ξ̄ i∇̄µh

+ hµν∇̄ i ξ̄ν − hiν∇̄µξ̄ν + ξ̄ i∇̄νh
µν − ξ̄ µ∇̄νh

iν + h∇̄µξ̄ i}, (3)

where i takes values in 1, 2, . . . D − 2 and the charge is normalized as shown, by dividing
with the D-dimensional Newton’s constant and the solid angle. These charges are background
gauge invariant under the diffeomorphisms δζ hµν = ∇̄µζν + ∇̄νζµ: δζQ

µ = 0.
Let us now calculate the conserved charges of the metrics [1] for D > 3. (We shall treat

the special D = 3 case at the end). They have the Kerr–Schild form [18, 19]

ds2 = ds̄2 +
2M

U
(kµ dxµ)2, (4)

in terms of the de Sitter metric

ds̄2 = −W(1 − �r2) dt2 + F dr2 +
N+ε∑
i=1

r2 + a2
i

1 + �a2
i

dµ2
i +

N∑
i=1

r2 + a2
i

1 + �a2
i

µ2
i dφ2

i

+
�

W(1 − �r2)

(
N+ε∑
i=1

(
r2 + a2

i

)
µi dµi

1 + �a2
i

)2

. (5)

Here ε = 0/1 for odd/even dimensions and D = 2N + 1 + ε. The null 1-form reads

kµ dxµ = F dr + W dt −
N∑

i=1

aiµ
2
i

1 + �a2
i

dφi, (6)

with

U ≡ rε

N+ε∑
i=1

µ2
i

r2 + a2
i

N∏
j=1

(
r2 + a2

j

)
, W ≡

N+ε∑
i=1

µ2
i

1 + �a2
i

, F ≡ 1

1 − �r2

N+ε∑
i=1

r2µ2
i

r2 + a2
i

. (7)

To find the energy and angular momenta corresponding to (4), we must compute the charges
Q0 for the corresponding Killing vectors: for the energy we shall take ξ̄ µ = (−1, �0) and each
angular momentum has the appropriate unit entry (0, . . . 1i . . . 0). Then

Q0 = 1

4	D−2GD

∫
�

dSr{g00∇̄0hr0 + g00∇̄rh00 + h0ν∇̄r ξ̄ν − hrν∇̄0ξ̄ν + ∇̄νh
rν}. (8)
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Using the energy Killing vector, we obtain3

ED = 1

4	D−2GD

∫
�

dSr

{
g00g

rr∂rh
00 +

1

2
h00grr∂rg00 − m

U
g00∂rg00 + 2m∂rU

−1

+
2m

U
grr∂rgrr − m

U
grrkikj ∂rgij +

m

U
gij ∂rgij

}
. (9)

To compute ED , one needs the large r behaviour of the integrand I of (9); since

g00 → W�r2, F → −1

�r2
, U → rD−3, kφ → aφ

r2
, (10)

then

I = 2m

rD−2
[(D − 1)W − 1]. (11)

For completeness, let us also note how the determinant is calculated,

detg = −W(1 − �r2)F

N∏
i=1

(
r2 + a2

i

)
µ2

i

1 + �a2
i

det M. (12)

Here M is the matrix representing the coefficients of the form dµi dµj in the metric, which
can be expressed as (no repeated index summation)

Mij = Aiδij + BiBj + CiCj (13)

where

Ai =
(
r2 + a2

i

)
1 + �a2

i

, Bi =
√(

r2 + a2
N+ε

)
1 + �a2

N+ε

µi

µn
(14)

Ci =
√

�

W(1 − �r2)

((
r2 + a2

i

)
1 + �a2

i

−
(
r2 + a2

N+ε

)
1 + �a2

N+ε

)
µi.

Then we have

det M =
N+ε−1∏

i=1

Ai

N+ε−1∑
i=1


B2

i

Ai

+
C2

i

Ai

+
N+ε−1∑

j �=i

B2
i C

2
i

AiAj

−
N+ε−1∑

j �=i

BiBjCjCi

AiAj


 . (15)

Inserting (14) in the above equation, one gets

det M = 1

Wµ2
N+ε

N∏
i=1

1

1 + �a2
i

. (16)

Using equations (16), (12), (11) the energy of the D-dimensional rotating black hole becomes

ED = m

�

D−1−ε
2∑

i=1

{
1

�i

− (1 − ε)

(
1

2

)}
. (17)

where

� ≡
D−1−ε

2∏
i=1

(
1 + �a2

i

)
, �i ≡ 1 + �a2

i . (18)

3 We are assuming that the background spacetime is AdS rather than dS, whose cosmological horizon causes
complications. Some of these issues were addressed in [8, 9]. For details of acceptable asymptotic falloff to (A)dS
in various dimensions, we refer to [10].
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This expression reduces to the standard limits ai → 0 and � → 0, and agrees (up to a constant
factor) with those of [13–15].

The computation of angular momenta follows along similar lines. Consider a given, say
that ith (which we call the φ) component, i.e., the Killing vector ξ

µ

(i) = (0, . . . , 0, 1i , 0, . . .).
Then the corresponding Killing charge becomes

Q0 = 1

4	D−2GD

∫
�

dSr{gφφ∇̄0hrφ − gφφ∇̄rh0φ + h0ν∇̄r ξ̄ν − hrν∇̄0ξ̄ν}

= 1

4	D−2GD

∫
�

dSr

{−gφφgrrg00∂rh0
φ
}
. (19)

Once again the integrand can be calculated to be

I = (D − 1)2maiµ
2
i

rD−2
(
1 + �a2

i

) . (20)

Putting the pieces together, the angular momentum is

Ji = mai

��i

. (21)

This expression again agrees with the previous ones. Note that, unlike in the energy expression,
ε does not appear here since even-dimensional spaces have as many independent 2-planes as
the odd-dimensional spaces with one lower dimension4.

Having computed the desired conserved charges (17), (21) for Kerr–AdS spacetimes in
D > 3, let us briefly turn our attention to the D = 3 BTZ black hole [20]. This solution has
long been studied but we recompute the charges with our method for the sake of completeness.
The BTZ black hole differs from its higher dimensional counterparts in one very important
aspect: for it, AdS is not the correct vacuum background [20]. The full metric is

ds2 = (M − �r2) dt2 +
dr2

−M + �r2 + a2

4r2

− adt dφ + r2dφ2 (22)

The background metric corresponds to M = 0 and AdS corresponds to M = −1. Only AdS
with J = 0 is allowed for M < 0: the others have naked singularities. So we consider M > 0
and compute the charges following our calculations above (about the M = 0 background).
We get the usual answers

E = M, J = �. (23)

BTZ black holes also solve the more general topologically massive gravity equations,
where the Einstein term is augmented by the Cotton tensor [21],

Gµν + �gµν +
1

µ
Cµν = κτµν. (24)

Conserved charges in this model were obtained in [22], in terms of those of the Einstein model
Q

µ

E ,

Qµ(ξ̄) = Q
µ

E(ξ̄ ) +
1

µ

∮
dSi

{
εµiβGL

νβ ξ̄ ν + ενi
βGµβ

Lξ̄ν + εµνβGLi
β ξ̄ν

}
+

1

µ
Q

µ

E(ε∇̄ ξ̄ ), (25)

where Q
µ

E(ε∇̄ ξ̄ ) is the Einstein form but ξ̄ is replaced with its curl. Once the contributions
of the Cotton parts are computed the mass and the angular momentum of the BTZ black hole
reads

E = M − �a

µ
, J = a − M

µ
, (26)

a shift in values that may be compared with those of gravitational anyons [23], linearized
solution of TMG but not of pure D = 3 Einstein.

4 For even dimensions, there is a nice relation between the energy and the angular momentum E = ∑
i

Ji
ai

.
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3. Mass and angular momenta in higher curvature models

We turn now to a slightly more formal exercise, which is to indicate the stability of our
generic charge definition framework as it applies to a wider range of models, specifically
higher derivative gravities. While Kerr-like solutions to R + R2 gravity models have yet to be
discovered, it is not unlikely that they would approach the Einstein ones asymptotically. In
that case, we could compute their conserved charges, defined as integrals at infinity, using the
definitions for generic quadratic models [9]. Let us stick to the quadratic models of the form5

I =
∫

dDx
√−g

{
R

2κ
+ 2�0 + αR2 + βR2

µν + γ
(
R2

µνρσ − 4R2
µν + R2

)}
. (27)

This model allows constant curvature spacetimes with an effective cosmological constant
given as

� = − 1

4f (α, β, γ )κ
{1 ±

√
1 + 8κf (α, β, γ )�0} for f (α, β, γ ) �= 0, (28)

where

f (α, β, γ ) = (D − 4)

(D − 2)2
(Dα + β) +

γ (D − 4)(D − 3)

(D − 2)(D − 1)
. (29)

When the bare cosmological constant vanishes (�0 = 0 ), (A)dS spaces are still allowed and
one has the + sign branch in (28). Conserved charges in this model, which we quote below,
were defined in [9]

Qµ(ξ̄) =
{

1

κ
+

4�Dα

D − 2
+

4�β

D − 1
+

4�γ (D − 4)(D − 3)

(D − 2)(D − 1)

} ∫
dD−1x

√−ḡξ̄νGµν

L

+ (2α + β)

∫
dSi

√−g{ξ̄ µ∇̄ iRL + RL∇̄µξ̄ i − ξ̄ i∇̄µRL}

+ β

∫
dSi

√−g
{
ξ̄ν∇̄ iGµν

L − ξ̄ν∇̄µGiν
L − Gµν

L ∇̄ i ξ̄ν + Giν
L ∇̄µξ̄ν

}
. (30)

where Gµν

L and RL are the linear parts of the Einstein tensor and the scalar curvature,
respectively. The second and the third line vanish for Einstein spaces. The first line, on
the other hand, is just a factor times the cosmological Einstein theory’s charges (3). Therefore
for asymptotic Kerr–AdS solutions, their conserved charges are given by the first term in (30),
under the condition (28). Let us specifically consider the popular Einstein–Gauss–Bonnet
theory, α = β = 0. Also, implementing the condition (28) (with the + sign) we have

Qµ = −
√

1 + 8κf (γ, 0, 0)�0
1

κ

∫
dD−1x

√−ḡξ̄νGµν

L . (31)

Although the energy seems to have the wrong sign, this is a red herring: as shown in [24], for
the non-rotating case the exact metric reads

ds2 = g00 dt2 + grr dr2 + r2 d	D−2 (32)

−g00 = g−1
rr = 1 +

r2

4κγ (D − 3)(D − 4)

{
1 ±

{
1 + 32γ κ(D − 3)(D − 4)

m

(D − 2)rD−1

} 1
2

}
,

(33)

whose asymptotic forms branch into Schwarzschild and Schwarzschild–de-Sitter respectively,

−g00 = 1 − 4m

(D − 2)rD−3
, −g00 = 1 +

4m

(D − 2)rD−3
+

r2

γ (D − 3)(D − 4)
. (34)

5 Note that we changed normalization of the cosmological constant compared to the previous section.



3388 S Deser et al

We see that the SdS branch comes with the ‘wrong’ sign compared to the usual Schwarzschild
one. Therefore, the minus sign in the energy becomes positive once Gµν

L is explicitly
computed. We conclude that the conserved charges in the Einstein–Gauss–Bonnet theory for
such asymptotic solutions would be simply proportional to those of (17), (21) cosmological
gravity [25]:

EGB =
√

1 + 8κf (γ, 0, 0)�0ED, Ji(GB) =
√

1 + 8κf (γ, 0, 0)�0Ji, (35)

It is important to note that if the coefficient
√

1 + 8κf (γ, 0, 0)�0 does not vanish, then one
can simply rescale6 the Killing charges to get the Einstein charges (17), (21).

4. Conclusions

Using the charge definitions via background Killing charges of [8, 9] we have computed
the mass and angular momenta of the rotating Kerr–AdS black holes for D dimensions for
cosmological Einstein gravity. As a test of stability, we checked that the corresponding charge
definitions for higher order would lead to the same values for asymptotically similar geometries
up to the indicated constant rescaling.
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