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Gravitational Energy in Quadratic-Curvature Gravities
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We define energy (E) and compute its values for gravitational systems involving terms quadratic in
curvature. There are significant differences, both conceptually and concretely, from Einstein theory. For
D � 4, all purely quadratic models admit constant curvature vacua with arbitrary �, and E is the
‘‘cosmological’’ Abbott-Deser (AD) expression; instead, E always vanishes in flat, � � 0, background.
For combined Einstein-quadratic curvature systems without explicit �-term vacuum must be flat space,
and E has the usual Arnowitt-Deser-Misner form. A �-term forces unique de Sitter vacuum, with E the
sum of contributions from Einstein and quadratic parts to the AD form. We also discuss the effects on
energy definition of higher curvature terms and of higher dimension.
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The ‘‘post-Einstein’’ constant � is of dimension �GL � �
�ML��1, leaving ��;�� dimensionless.

side, as part of the total source T�� that also includes ���,
thereby attaining the desired form
General relativity is no different from other effective low
energy models, acquiring higher momentum corrections,
of quantum or string origin, to the Einstein action. They are
represented locally by higher derivative additions.
Coordinate invariance implies that these local higher de-
rivative additions consist of second and higher powers of
curvatures (and their derivatives). The physics of such
‘‘improved’’ models, as well as of those consisting of
purely higher derivative terms, is not immediately reduc-
ible to that of Einstein theory, just as addition of a cosmo-
logical (zero momentum) term profoundly changes the
physics of the latter. In particular, the fundamental notion
of gravitational energy is sufficiently different in the pres-
ence of a � term that more than two decades elapsed before
its extension was obtained [1,2]. The next step in the
momentum ladder likewise requires a clear understanding
of its energy. Although quadratic-curvature models, with or
without Einstein or � terms, have long been studied, there
has been a great deal of confusion about their energy. This
has been due primarily to the use of a flat, rather than the
more relevant (even in the absence of a fundamental �
term, as we shall see) constant curvature, vacuum. In this
Letter, we intend to provide a universal definition of en-
ergy, and to evaluate it in appropriate asymptotic geome-
tries, for theories quadratic (or higher) in curvatures, with
or without Einstein and cosmological components.

We will initially work in D � 4, which, interestingly, is
somewhat special. Since the Gauss-Bonnet invariantR
d4x
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and does not contribute to field equations, the generic
quadratic-curvature action is
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The famous conformal (Weyl) gravity corresponds to the
choice � � �3�, but has no special energy features; in-
stead, we will see that � � �4� is unique in this respect.
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Let us recall that there are two necessary facets of a
proper energy definition: First, identification of the ‘‘Gauss
law,’’ whose existence is guaranteed by gauge invariance;
second, choice of the proper vacuum, possessing sufficient
Killing symmetries with respect to which global, back-
ground gauge-invariant, generators can be defined; these
will always appear as surface integrals in the asymptotic
vacuum. Historically, the first application was, of course, to
Einstein gravity without a cosmological term [1] whose
natural vacuum is flat space with its Poincaré symmetries.
The next case, cosmological gravity, is a bit more involved
[2], as its vacua, de Sitter (dS) or anti–de Sitter (AdS)
spaces have constant (rather than zero) curvature, neces-
sarily dictated by the cosmological constant � in the
action. The relevant asymptotic symmetries are, respec-
tively, SO�4; 1� and SO�3; 2�, which still support appropri-
ate generators. Consider first the pure quadratic gravity of
(1). Although the equivalents of the Gauss law still exist
and are still the (0�) components of the field equations, the
choice of background is neither unique nor obvious. With
conventions, signature ��;�;�;��, �r�;r��V� �
R���


V
, R�� 
 R���
�, the field equations are
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1
4g�� R� � �2�� ���g��� �r�r��R
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1
2g��R� � 2��R�
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4g��R
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� ����;

(2)

where we have introduced a (necessarily covariantly con-
served) matter source ���. Now decompose the metric into
the sum of a background 
gg�� [that solves the source-free
version of (2)] plus a deviation h�� of arbitrary strength,

g�� 
 
gg�� � h��: (3)

As originally explained in [2], which we follow here, we
separate the field equations into a part linear in h�� plus all
the nonlinear ones; the latter are moved to the right hand
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O� 
gg�����h�� � T��: (4)

The operator O� 
gg� is Hermitian and depends only on the
background metric (which also moves all indices and
defines the covariant derivatives 
rr�). It inherits both back-
ground Bianchi identity and (being Hermitian) background
gauge invariance from (the Bianchi identities of) the full
theory, namely, 
rr�O� 
gg����� � O� 
gg����� 
rr� � 0. As a
consequence of these invariances, it is guaranteed that if
the background 
gg�� is a vacuum that admits Killing vec-
tors 
���: 
rr�


��� � 
rr�

��� � 0, then there are associated

conserved charges, and they are expressible as surface
integrals,

Q�� 
��� �
Z
dSiF

�i; (5)

where F ��, an antisymmetric tensor obtained from O� 
gg�,
depends on the specific model. This is easily verified by
noting that T�� is both background conserved and sym-
metric. Hence 
rr��

��������
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p
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explicitly defining an ordinarily conserved vector current.
The energy is simply that charge in (5) whose Killing
vector is timelike.

It is here that the first departure from the Einstein frame-
work occurs: the theories of (1) are scale invariant and have
no unique vacuum: Any constant (or zero) curvature space
provides a candidate background. For our systems (2), the
detailed form of (4) about a constant curvature background
reads

T�� � �2�� ��� 
gg��� � 
rr�

rr� ��g���RL
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(6)

where � � 
gg�� 
rr�

rr�, GL

�� 
 RL�� �
1
2 
gg��R

L ��h��
with 
rr�GL

�� � 0; we define 
RR�
�	 � �
3 � 
gg�� 
gg
	 �


gg�	 
gg
��, so that 
RR�� � �
gg��. The degenerate, � � 0,
case 
gg�� �  ��, just leads to T�� ! �@@RL���, which
necessarily implies that the energy of all asymptotically
flat solutions of any purely quadratic model vanishes: this
is an obvious aspect of the fact that equations of the form
r4! � 	 are solved by!! r�

R
d3x	�: energy and source

are not related by a Poisson operator. [This remark directly
accounts for the well-known result [3] that energy in Weyl
gravity vanishes for asymptotically flat metrics, but it is no
different in this respect from any other ��;�� system.] We
emphasize that while energy is too degenerate to be mean-
ingful here, asymptotically flat solutions are not excluded
thereby, nor do Hamiltonian methods cease to be appli-
cable, for example, in the analysis of the excitation spec-
trum about flat space.

We come next to the generic case of 
gg�� with � � 0.
Here the linearization produces a universal effect: We find
that
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The integral in the first line is the standard charge
of cosmological Einstein gravity [2], itself also a
surface integral, of course. (In obtaining the above,
gauge-invariant, surface form of the charge, it is helpful
to organize the integrand to exhibit antisymmetry in � and
i.) Simple as this result is, it becomes even nicer when we
turn to the evaluation of the relevant, exterior, asymptotic
solutions, namely, the Schwarzschild–de Sitter (SdS) and
Schwarzschild–anti–de Sitter metrics; we label them col-
lectively by SdS for brevity. (Here a major difference
between dS and AdS, that the former has an intrinsic
horizon, enters. As explained in [2], the dS energy defini-
tion is strictly valid only inside the horizon, where the
relevant Killing vector stays timelike: This restriction
also logically entails that the black hole horizon be small
compared to the cosmological one. We do not discuss the
question of global definability or usefulness of dS energy
[4], as it is really separate from the choice of dynamical
model. No such problem affects the AdS case, where
the surface integrals may be taken at spatial infinity.) In
cosmological Einstein gravity,Q0 �

R

���G

0�
L indeed gives

the desired value 8�MG, whereM is the ‘‘Schwarzschild’’
mass in the SdS solutions. Here we find that the extra,
second and third, lines of (7) all vanish for SdS spaces, so
generically the energy is proportional to that of cosmologi-
cal Einstein gravity:

E � 4�r0��1�4�� ��; (8)

where r0 is the coefficient of 1=r in the usual static form of
SdS, i.e., the monopole moment of the total source, 	,
including (as always) gravitational contributions; it be-
comes proportional to the source mass, m �

R
d3x�00,

for weak fields and sources, just as in Einstein theory.
[More precisely, the Gauss equation is of the form
�r2! � �	, so that r0 � ��=��M; the effective gravita-
tional constant is ��=�� here.] Note that Weyl theory now
has nonvanishing energy. Instead, it is the special � �
�4� theory, whose action is the square of the traceless
Ricci tensor ~RR�� � R�� �

1
4g��R that has vanishing en-

ergy for all values of �.
We consider now the combined Einstein plus quadratic-

curvature theories. If there is no explicit � term, then
constant curvature spaces are no longer solutions of the
combined equations, and we are forced to flat background:
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consequently, the Einstein term’s energy expression is the
whole story (which does not mean that the quadratic terms
do not contribute, as sources, to its value). If instead, a �
term is also present, then constant curvature with precisely
that � value is not only an allowed but the unique vacuum;
the scale is now fixed by the Einstein part, and the energy is

E � r0G�1 � 4�r0��1�4�� ��: (9)

Here r0 is the ‘‘Schwarzschild mass’’ that solves the
Poisson equation, with contributions from both R and R2

parts. For weak fields and sources, E reassuringly becomes
proportional to m, as before.

Thus far, we have worked in D � 4 and considered only
models with at most quadratic terms in curvatures.
Depending on its physical origins, a given higher power
term may be viewed either as a part of the fundamental
action (e.g., if there is no Einstein term, as in Weyl gravity)
or as a small correction that should not be in the ‘‘kinetic’’
term, nor a defining component of the energy expressions,
though it still affects their values. However, even when
viewed as sources, higher curvature powers pose a problem
as they can prevent the existence of nonzero curvature
background vacua. Put another way, their contributions
to T�� do not fall off at infinity. Take, for example, a
generic higher curvature invariant

R
Rn, n > 2, or R rep-

resenting Riemann, Ricci, or scalar curvatures, possibly
involving also (an even number of) covariant derivatives.
Schematically, this gives rise to a field equation contribu-
tion of the form �Rn��� � �rrRn�1���. Just as for n � 2,
its linearization about flat space does not affect the energy.
However, generically these terms do not allow constant
curvature solutions, since they are not homogeneous
of order zero in the metric: 
RnRn�� does not vanish even
though 
rr 
rr� 
RRn�1��� � 0 does. While the linearization,
�n�2��� 
rr 
rr�RL, does resemble that of n � 2, the back-
ground part � 
RRn��� acts (as mentioned above) as a constant
source in the Gauss equation. If we classify the nonlinear
terms according to the powers of the three basis tensors—
Weyl (traceless part of Riemann), ~RR (traceless part of
Ricci), and scalar curvature—then they will allow cosmo-
logical vacua if they are not pure Rn. They also explicitly
contribute to the energy, as well as being sources of
it, through the linear h�� terms in their field equations’
expansions.

The above complications arise immediately in D > 4:
There, the quadratic terms themselves are no longer homo-
geneous of degree zero in the metric, seemingly forbidding
(A)dS backgrounds. There are three independent invariants
(unlike the two atD � 4). We may take this basis to be (no
longer conformally invariant) Weyl gravity, the ~RR2 term,
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and (scalar) R2. The latter action forbids constant curva-
ture, while the first two clearly permit it (see also [5]).
Hence they also support our energy definition. The ~RR2

term’s explicit contribution will vanish just as it did inD �
4. This leaves the Weyl gravity as both allowing nonflat
vacuum and contributing explicitly to energy. The relevant
asymptotic metric here is again SdS (or slightly general-
ized form allowed for pure Weyl theory). If Einstein and
cosmological terms are also present, our earlier D � 4
analysis applies straightforwardly.

In summary, we have defined energy for arbitrary gen-
eral covariant gravitational models, particularly the sim-
plest, quadratic-curvature, systems. In D � 4, pure
quadratic actions have useful, nonvanishing energy (only)
with respect to cosmological backgrounds. While these
vacua are infinitely degenerate, their value for any chosen
� is quite physical, being proportional to that of the
Schwarzschild mass in the relevant SdS metric. Models
with both Einstein and quadratic actions differ in imposing
a unique background; here the total energy is the sum of
contributions proportional to the cosmological (Abbott-
Deser) mass, if there is also an explicit � term, and just
equal to the Arnowitt-Deser-Misner mass if � � 0. We
also studied the effect on energy definition of higher cur-
vature invariants and its extension to D > 4. The general
framework could be maintained if the higher powers con-
tained curvature combinations such as Weyl tensors that
vanish in (A)dS, and not just the scalar curvature. For D >
4, there are three independent quadratic terms: If R2 is
present, flat vacuum is forced. The other two combinations,
in particular, Weyl gravity, allow (A)dS backgrounds and
hence permit D � 4 energy construction. Details will be
presented elsewhere.
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