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Abstract

We give a review of our recent work on conserved charges in cosmological spacetimes. We compute
the mass and the angular momenta of various solutions in D dimensions. This is an extended version of
a talk given by B. Tekin. The original material can be found in the related papers in our references.

1. Introduction

Conserved quantities, such as energy-momentum, electric charge, angular momentum, baryon number
etc., are important in the description of physical phenomena. In the presence of gravity, definition of certain
conserved charges ( such as energy) become rather tricky. In the literature, one can find many different
definitions which give different results for the same spacetimes. Especially when long-range scalar fields that
modify the asymptotic form of the metric are present, one has to be very careful about writing down an
energy expression. Our task in this paper is modest: we shall give a review of the techniques of defining
conserved charges in asymptotically (Anti)de-Sitter spaces developed by Abbott-Deser (AD) [1] and Deser-
Tekin (DT) [2]. [ We would like to stress that we do not present new material but simply quote our earlier
work and carry out the computations in a little more detail.] These methods are in the same spirit as the
Arnowitt-Deser-Misner (ADM) [3] methods which use the Killing symmetries and work for asymptotically
flat geometries. For related information, please see [4, 5, 6].

In addition to the cosmological Einstein theory, we will also define the global charges primarily in D
dimensional quadratic theories that frequently appear in various low energy string theory or supergravity
models. We will first present a reformulation of the original definition of conserved charges in cosmological
Einstein theory; then we will derive the generic form of the energy for quadratic gravity theories in D
dimensions and specifically study the ghost-free low energy string-inspired model: Gauss-Bonnet (GB) plus
Einstein terms [2].

Let us recall that a definition of gauge invariant conserved (global) charges in a diffeomorphism-invariant

(Secondly; they are expressible as Stinface nfearals [IN28 [ Just to give an example of how various

charge definitions in the literature give different expressions, we simply note that in certain prescriptions,
different than ours, the background AdS space have non-vanishing energy. For comparison of various charge
definitions we refer the reader to a recent paper [8]. ]
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2. Reformulation of Abbott-Deser Charges for generic gravity
models

2.1. Conserved Charges

We first look at how conserved charges arise in a generic gravity theory coupled to a covariantly
— Consider the following equations of motion which either comes from

a proper Lagrangian or is endowed with the Bianchi identities and covariant conservation of the matter

w (1)

(effictive coupling constanty We work in generic D dimensions.

G — 7. -0 ) (2)

(not necessarily small everywheres) | One can also work in the first-order vielbein spin-connection formulation,

which is necessary whenever fermionic fields are to be taken into account. Such a computation was carried

—-. (3)

source:

out recently [6], whose result we shall quote below. ]

i

Note that the crucial point here is that we are looking for ordinarily conserved charges and we can get this

with the help of background Killing vectors. Therefore, up to a constant, (e conserved Killing charges are
@@= [ ey [ase

struction let us apply the outlined procedure in the most interesting case: The

(6)

After this generic
cosmological Einstein theory. The linearization of the Einstein equation

1
R;w - §g/wR + Ag;w = KTy, (7)
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= Run and the constant curvature vacuun

Ruwp = @ (8)
B © o=, A
B e ae

We define all terms of second and higher order in h,, and the matter source 7, to be the gravitational
energy-momentum tensor and write gﬁy as

(10)

1_ 2A
gﬁy = R{ZV - 59;4,,RL _ mhw = KT . (11)

As can be explicitly checked, the left hand side of obeys the background Bianchi identity

_ D 2A y — v
VM(R% - 59“ Ry — mhﬂ ) = VMQZ =0 (12)

and thus
vV, =0. (13)

In order to write the spatial volume integrals as surface integrals, we need to carry out the linearization
of the relevant tensors. In this part that is what we shall do.

We will take the signature to be (—,+,+,+,...). We know that any invertable metric must satisfy
99" = 6, Renaming 6g,., = h,

Juv = Guv + 59;41/ .

We linearize the connections I‘gﬁ = % 9" (0agpy + 089ar — Ovgap) With the use of g"* = g — g

5T, = %gW(va(sgﬁy ¥ 5000y — Vudgas) . (14)
The Riemann tensor is
Rapy = 0p1', — 0005 + 17,105 = T0s00, (15)
yielding;
SR o = Vp(0TH,) — Vo (0T%5). (16)

1 < [ contraction gives the linear part Ricci tensor ( a.k.a the Palatini identity)

5R;u/ = va(ér;ojy) - Vﬂ(érgy) .
Now let us write this in terms of dgng with use of (14) and manipulating the indices we are left with

1 L _ o
OR, = §{V”VM59W +VoV.,09u0 — [0, — V, Vi h}, (17)
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where h = §*“hae and VoV, = [ that is the background d’Alembertian operator.
The linear part of the Ricci scalar reads

= I 2

Now, we are ready to write (11) in terms of the deviation part of the metric. That is,

1 2
[ak— LA 11 % _ ARV
I Ry =50 e = 5
1, = - = _ -
= 5(—|:|h“” — VEVYh 4+ VVYh7E 4+ VVIRY)

1 = e e 2 2

_ mv | oo _ pv
58" (~-Oh + Vo Vah (D_Z)Ah) (D_Z)Ah : (19)

2.2. Converting the volume integrals to surface Integrals

In converting the volume integrals to surface integrals, let us the following route which will be convenient
in the higher curvature cases. Collect all terms in the covariant derivative to get surface terms.

_ _ _ AN -
2¢, o= 2 v - Vﬁuy - Vhl“/
6.9 ERL 69" R~ 5
= &V, VIR - VAT 4 VYR 4V, V)
_ - = - 2A 4N -
- — Ph oV, RV — h} — et 2
-V, ,V’h +V,V D9 } (D_2)£ (20)
which can be recast into the form
26, G = &,V — ETTPh 4§V, VPR 4 €5,V
o o _ AN -
W Pl _ M pv wp uv
+E£HV,VPh — EFV )V, APV + (D—2)§ h (D—2)§Vh . (21)

To collect all terms, we use the commutator relation of a vector that gives us the Riemann tensor. In the
first, fourth, fifth and sixth terms the Killing vectors are taken inside the covariant derivative with extra
terms that will come from the derivative of the Killing vectors. In the second and third terms, places of
derivatives must change, after that the Killing vectors can be taken inside the derivative with two additional
terms, the second comes from the exchange of derivatives. After these calculations we are left with

26,G7" = V(& VIR — PV R+ PV WY + E VIR + E4VPh — 4V, 17}
g~ g+ gy 6 )
H(Vo &) (VPR) = (V) (VPR) + (V8 (Vo h?) .
We will look at the last three terms closely:
(V&) (VPR) =V, (RHNVPE,) = W™ (V VP8, )
Operating on Killing vector equation, that is vuéy/ + @ugu =0, with V¥, one gets
VIV 6+ VIVLE, = 0.
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The second term can be written in the commutator form that is
Ijgy + [vﬂ) vI/]EM = 0 )
or simply

2N -

Ijgr/ = —mfu-

Using this relation, we have

_ _ _ 2A _
(V&) (VPR) = Vo (W VPE)) + o h Gin&™

(D-2)
and
(F08)(V7h) = =9, (hT"E) + 5= h.
Using the property of a Killing vector,
o _ o 2A _ _
(Vo EM)(V,h) = =V ,(hP'VHE,) — m(@huu — &),

Finally collecting these results, we have

OF° (aNeAgeeigeroijumatge )

SR ek e = = o

Here dS; = /—detg d§;

important point which is often missed: Eqn. (23) gives the conserved charges for spacetimes that are
asymptotically AdS, which was our goal. But the obviously the formula works for A = 0, namely the

We would like to emphasize a very

asymptotically flat, case. As we have made no assumption on the choice of coordinates, our formula is a
coordinate independent expression. Therefore, before calculating the conserved charges Q°, let us check our
claim of coordinate or the ”gauge” invariance of our definition, and also we should check if it goes to the
ADM charges in the limit of an asymptotically flat background (For Cartesian coordinates that is ?j — 0;)
in which case our timelike Killing vector is £, = (1,0) .

First we will look at the gauge-invariance. (Uiider an infinitesimal diffeomorphisin, generated by avecton
¢ ( not to be confused with our Killing vector! ), e deéviation part of the metric transforms as

Ot = VG + Vi (24)

First we will look at the linear Ricci scalar, we have

_ o AN L
) = —och VHochgy — ——=VH(, .
¢Rp = —Doch +VIV*ochoy (D—Z)V Cu
which yields
— UV O v, VLAV v, v, 4A v,
(SCRL = —g” D(VMCV + VVCM) +V VM(VUCM + VMCU) - mV“Cﬂ
_ o _ AN
= —20OVH(, + VIVHEV,(, + VI, — WV”CM .

423


fizik
Highlight

fizik
Highlight

fizik
Highlight

fizik
Highlight

fizik
Highlight

fizik
Highlight

fizik
Highlight

fizik
Highlight

fizik
Highlight


GULLU, TEKIN

Let us look at the second and third terms carefully:

[vuv va]gu = vuvagu - vavugu ’

_ 2A _
VMVUCM - mgy + VUVMCM .

Therefore, we have

o 2N _ _
VIV oG = gy Voo +EV G

In the third term the same calculations can be done, yielding

2A

V= 5oy

vﬁgﬁ + Ijvaga

We have the background gauge invariance of the linear Ricci scalar

O0cRrL =0.
Therefore
2A
L _ L _
0cG,,, = 0c Ry, D-2) Oc Py
We then have
1 - _ o o
(;Cgﬁu = 5(_DVMCU - DVUCM - vuvuvﬁgﬁ - VMVUVQCQ

+VoV, Vel + VIV, V,lo + VIV, Vel + VIV, V(o)
2A

5=y (Vnl + V).

Just as before, let us look at the terms that are in the second line: The fifth term is:

viAvARV 2A = o = vid viAvARv
\Y VUVUCM = m(ng Co' - g,wV CU) +V VUVUCM .
The sixth term is:
o = 2A — - S
V VVVMCU = m(vugu - VMCU) + V VMVUCU .
The third term is:
VOV Vot = 2 (G T — Gou VTG + VIV kG
w Uu—(D_2)(D_1) g;,w o Gov w oV uSv -
The fourth term is:
I B 2N 2A — .
VoV, V(e = mvugj + m(vugj - gV o)

2N = S e =
—V. V.V, Vo, .
Collecting all these, terms we end up with

5:Glh, =0,
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which means that g}jy is gauge-invariant. Therefore, we have 5CR{ZV = %(&hw.

Hence §:Q* = 0; that is, the Killing charge is indeed background gauge-invariant.

Now we will examine (23) in the limit of an asymptotically flat background, which should yield the ADM
charge. Let us just look at the mass to begin with. With EM = (1,0), wehave {; =0, §, = 1 and £ = —1 in
flat space with the metric 7, = diag(—1,1,1,1). We have h = —hgo + hs;. Being in Cartesian coordinates,
we can replace the covariant derivatives with the partial derivatives (?j — 0;). Hence,

1 _ N o _ . y
M=—— f dSi{&0°h" — &R — £0'h — £ h™® + 0;h'} .
4Qp_2yGp Jx
Writing h explicitly yields
1 . . . g
M = ———— ¢ dS;{-0'h"° — d'h;; + 0'h o;h"
4Q(D—2)GD f; { 73 + 00 + J }
1 iy ,
= — ¢ dS;{0;h"7 — O'h;;
4Q(D—2)GD é S, {8.7 0 JJ}

which is the usual ADM mass [3].

Instead of the metric, we could have worked with the vielbein and the spin connection ( as is done in
theories where there are fermions). Let us simply quote the final result for the expression of the charge in
that case:

. 1 o o -
Qa(f):m/ww dSi{-€* D'y + " Dy £ — p*, D' E* + 2 D by,

D%y + & D% — & D' o™ + o* D' & + & D* ™} . (25)
where the full vielbein is decomposed into a background and a deviation parts.
et =e" 4ty e, (26)

We choose the background to be AdS. The details are to be found in [6].

3. The Energy of Schwarzschild (Anti)de-Sitter Solutions

We can now evaluate the energy of Schwarzschild-de Sitter (SAS) solutions.

wedfmrafilwiead) ooy
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=tha‘c also yields 5% [2].

Energy For D Dimensions In this case h &~ 0. From the line element gog, g+, oo, g~ and the corre-
sponding h,, terms can be calculated. Since ro = 0 for the background. We have

()0

To\p-3 ~00-00 00
hoo = (— , hoo=h" = ————.
00 ( r ) g g "hoo (1 — %;)_)2

(29)

2
. ()0 e (BP0 g)

(1—(2)P=3-)(1-%) (1— (P8 — 2"

(30)

We have

4 o _ - - _
= 167-(-72;'D TIHEO TD—Q{&]VOhrO _ govrhoo + hOOVr&] _ hrrVO§r + Vyhru}

QO
where the constant factors come from our normalization of the charges and the integration element dJS;.

4 o o _ o .

Q"= 167; dim rP7H{EOVR™ — §VTRY + hOOVTE — KTV, 4 Vo™ + Vi
D —

Playing with indices and setting h = 0 we get

47 1 -
Q" = lim 272{=8,hoo + hoog™,Goo + Orh"" + WG Dy Grr + =h" G0, G} -
167G p r—oo 2

In the limit of r — oo we get the energy in D-dimensions as

n"o (31)

[2].

8 == R = >

The D = 3 Case

G has dimensions of 1/mass [2. 9.
Adding electric charge will not change the answer in the solutions considered above ( except for the

D = 3 case, which is a little non-trivial.) We next consider the recently found D dimensional Kerr-AdS
solutions and compute their masses and angular momenta [10].

4. Conserved Charges of Higher D Kerr-AdS Spacetimes

> . ".ﬁ"-

(34)
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Beu T=el

[6]

The AdS Soliton
Consider the “AdS Soliton” of Horowitz-Myers [19)

p—1

2 T 7"8“ 2 i\2 2
ds® = 55 || 1= g | d + ) (da)? — dt

-1
p+1 2
o 14 9
= (1 = 7“17"‘1) o} dr=, (56)

which was obtained by the double analytic continuation of a near extremal p-brane solution. Here z’
(i =1,...,p—1) and the t variables denote the coordinates on the “brane” and r > ro. To avoid a conical
singularity at r = ro, 7 necessarily has a period 8 = 47¢?/(ro(p + 1)). Its energy was computed in [19]
using the method of [20]. Here we compute the energy using the method described so far. The background
(ro = 0) is the usual globally AdS spacetime in the horospherical coordinates, with the timelike Killing
vector

i=1

& = (-1,0,...,0). (57)

Defining the metric perturbation as outlined above and carrying out the integrations, we have

D—2
Vp_sm To

E=—
(D— 1)QD_2GD ¢D-2 ’

(58)

where Vp_3 is the volume of the compact dimensions. Up to trivial charge normalizations, our result matches
that of [19], which uses the energy definition of Hawking-Horowitz [20].

Eguchi-Hanson Solitons

Recently, Clarkson and Mann [21] found very interesting solutions to the odd dimensional cosmological
(for both signs) Einstein equations. These solutions resemble the even dimensional Eguchi-Hanson metrics
[22] - thus the name Eguchi-Hanson solitons - and asymptotically approach AdS/Z,, where p > 3. As shown
n [21], these solutions have lower energy compared to the global AdS spacetimes (or the global AdS/Z,
spacetimes). The energies of these solutions (for the case of 5 dimensions) were computed in [21] with the
help of the boundary counterterm method [23, 24]. It is important to note that boundary counterterm
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method needs to be worked out for a given fixed dimension. Here, we use the prescription outlined in the
previous section and find the energy of the EH solitons for generic odd dimensions. For a detailed description
of the metrics, we refer the reader to [21]. We simply quote their result: the EH soliton reads

2

or \2 (D=3)/2
ds? = —g(r) dt® + <—D — 1) f(r) |dy+ Z cos 0; do;
i=1
dr? r? (Di)m
n + (d6? + sin® 0; dp?) |, (59)
g(r) f(r)  D-1 =
and the metric functions are given by

r2 ayD-1

g =1% 5, fM=1-(3) - (60)

In the AdS case, to remove the string-like singularity at » = a, one finds that ¢ has a period 47 /p and there
is a constraint on the parameter a:

a2=02E 1. (61)

The background is obtained simply by setting a = 0 in (60). The details of the energy (the charge for
&' = (—1,0,...,0)) computation is rather lengthy and not particularly illuminating to present here. Instead,
we will only write down our result. For convenience, we define

m 1 -
PO = gy [, 45-£0.

and only present £(§), in the r — oo limit:

) 5 gD 1 (D-3)/2
TEIEO g(g):_ZQ(D—l)(D—l)ﬂ H sin ;. (62)
i=1

After the angular integrations are carried out, one obtains the energy of the EH soliton in generic odd
dimensions
(47)(D=1)/2 gD~1

E= Yz (D-1)PD2Qp ,Gp (63)

Specifically, when D = 5, one finds

at

E= T PG (64)
We note that this result differs from that of [21] in two respects: one of which is a trivial numerical factor
that can be attributed to normalization of the conserved charges; the second, and the more important one,
is the presence of an additive constant which is exactly equal to the energy of the AdS/Z, spacetime. Recall
that in the formalism we use, the background always has zero energy, unlike the boundary counterterm
method for which it has a finite energy.

“Taub-NUT-Reissner-Nordstréom” solution

We can compute the masses of the new charged solutions [25, 26, 27] in AdS spacetimes that have

non-trivial topology. Here, we only consider two examples that were presented in [25]. In D = 4, the
“Taub-NUT-Reissner-Nordstrém” solution reads

ds* = —F(r) (dt —2 N cos0d¢)? + % + (r2 + N?) (d6? + sin® 0 d¢?) , (65)
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where N is the nut charge and

™+ (2 + 6N r2 —2me?r — 3N* + 02 (¢ — N?)
F(r) = D . (66)

To find the energy of this solution, the correct background (that has zero energy) needs to be carefully
chosen. If we naively set m = ¢ = 0 and the nut charge NV = 0, then the energy of the solution with nonzero
m, q, N diverges. This is to be expected since N = 0 solution is not in the same topological class as that
of the N # 0 solutions. The background has to be chosen as m = ¢ = 0 but N # 0 as was shown by
Deser-Soldate [28] in the case of the (asymptotically locally flat) Kaluza-Klein monopole. In the light of
these arguments, one gets

m
E=—.
Ga (67)
In D = 6, the metric, for the details of which we refer to [25], reads
2 oy
ds* = —F(r)(dt —2N cosfydp1 — 2N cosbydps)” + o)
r
+(r? + N?) (d6? + sin® 01 d¢ + db3 + sin® 65 dg3) , (68)
where now
2 (9,.2 2
¢ (3r°+ N?)
F) = Garaey
1 2 4 2,2 4 6 4.2 2 4 6
+3€2(r2+N2)2 [?(=3N* — 6mr 4+ 6N?r? +r) — 15N°® 4 45N*r? + 15Nr* + 3r°] .
Once again the correct background is found by setting m = ¢ = 0 but N # 0, and the energy is
m
E=12—.
G (69)

In both cases, the electric charge ¢ does not appear in the total energy just like in the case of ordinary
Reissner-Nordstrém solution.

5. Higher curvature Gravity models
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also a solution [2]. The cosmological constant can be found using (71):

1, = 1 _ -
E(RMV — §gll«’/R) + 204R(R/“/ — _gMVR)

+ (2a+6)(gd-V,.V.)R
+ 29[RRu — 2R,60pR7? + Ry pr RPT

— — 1 — — —
= 2Ru R = 30u/(R2s, — 4Ro, + BY)]
- 1 — — 1 — —
+ ﬁD(RW/ - ig;u/R) + Zﬁ(R/LUVp - Zg;u/Rap)RUp =0. (72)

The terms that have covariant derivatives will be zero. The other terms can be calculated one by one and

-.QH (™

they give us

D>
two-parameter set (say a, ) of allowed solutions (2],
Now we will linearize and define the total energy-momentum
* as we did before.

T
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is easy to handle. First we take the indices up and than operate on this equation with a Killing vector, say
§V7
2A

Rl cvopo L
E'OR E'VEV,R” + D-2)

E'Rp. (76)

In the first term the covariant derivative must be taken outside to get surface terms:
IV VIR, = Va(@VORL) — (Vaf)(V®RyL)
= @a(gM@aRL) - vOz(RLvagM) + RL(Ing)
Va

{ VQRL — RLVO‘{“} - RLf“

2A
(D —-2)

In the second term of (76), we can easily change the places of covariant and contravariant derivatives because
of the Ricci scalar Ry, that is

&'V, R = &'V, V'R,
and making the v — « substitution, we have
EVLVPRL = Val@VPRL) — (Vaf®) (VP RL)
= @a(g‘lﬁﬂRL) s

where V£ is zero because of the Killing equation. Inserting these results into (76), the surface terms can
be taken out

EMORY — VAV, RY + 'Ry

2
(D -2)

Vo{&'VRp — RLVOEM} — s RLE" — Vo (V" Ry)

2
D oy (D —2)

2A
(D-2)
= Vo{¢"V*Rp —*VHR + R VFEXY.
The last term in (75) can be written as a surface term plus extra terms:
5u|jgfu = gy/vavaggu
= Vaol{&VG1"} = (Va&)(VGL),
where we have put the Killing vector inside the covariant derivative. In the second term we can freely move

the « indices and afterwards, we can also take terms inside the covariant derivative with an extra term.
Hence, we get

GG = Vo{&, VoG =GV} + G T, -
Now we can add and subtract the terms V,{£, V*G?} and V,{GS"VHE, }
OO0 = Va{& VoG — &, VIGY — GIYVeE, + GV VIE )
ggyljgu + va{guvuggy} - va{ggyvugu}-

If we expand the last two terms we can see that: (i) When the covariant derivative hits on the Killing vector
&,, it will be zero in the first one with the use of Killing Vector equation, because o and v are symmetric in
G¢v. (i) With the help of Bianchi identity, the term (V,G$¥)(V#E,) is zero. Hence we are left with

- yagmEnTe .
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We can write £,017" as a surface term. (Collecting everything, the final form of the conserved charges
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s e

Einstein-GB external solution, energy is positive and AdS vacuum is stable [2. 32].

6. Conclusion

In this review, we have defined the energy of generic Einstein plus cosmological term plus quadratic
gravity theories in generic D dimensions, for both asymptotically flat and (A)dS spaces. We have computed
the masses and angular momenta of various solutions, including D dimensional Kerr-AdS solution.

Our construction is based on the existence of background Killing vectors. For the background, we have
chosen either constant curvature ( AdS) or flat spacetimes. In our formalism, the background always has
zero charge. We would like to stress that this review does not present new material but simply extend some
of the work we have done recently. The interested reader is referred to the original material cited in our
references.
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