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The isoscalar giant monopole resonance (ISGMR) and isovector giant dipole resonance (IVGDR) in finite
nuclei are studied within the framework of a relativistic transport approach. Small-amplitude oscillations are
analyzed with the relativistic Vlasov equation, i.e., neglecting nucleon collision terms. The excitation energies
of ISGMR and IVGDR are obtained for spherical nuclei with various sets of Lagrangian parameters. In the case
of 208Pb we study in detail the dependence of the monopole response on the effective mass and symmetry energy
at saturation a4 given by the used covariant effective interaction. We show that a reduced m∗ and a larger a4 can
compensate for the effect on the ISGMR energy centroid of a much larger compressibility modulus Knm. The role
of the symmetry energy is confirmed by the observation of reduced corrections for the more symmetric 90Zr. This
result is important for overcoming the conflicting determination of nuclear compressibility between nonrelativistic
and relativistic effective interactions. For symmetry-energy dynamical effects, we analyze the influence of the
inclusion of an effective isovector-scalar channel, δ-meson field, with constant- and density-dependent couplings.
We show that the δ-meson contribution, keeping fixed the equilibrium a4 value, leads to a reduction in the centroid
energy of the ISGMR and IVGDR for 208Pb. The same mechanism can account for the apparent paradox of a
decrease of the frequency of a IVGDR mode in heavy nuclei (of volume type) even in presence of a larger a4.
All that in fact reveals the sensitivity of the ISGMR and IVGDR collective motions for neutron-rich systems on
the slope (or pressure) of the symmetry energy at saturation. Density-dependent vertices do not much affect our
conclusions. Following as a guidance the dispersion relations in nuclear matter, we see two main reasons for that:
The smoothness of the density dependences around saturation and the presence of compensation effects coming
from rearrangement terms.
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I. INTRODUCTION

In this work we study the isoscalar giant monopole and
isovector giant dipole oscillations in 208Pb and 90Zr, isoscalar
giant monopole resonance (ISGMR) only, by using the rela-
tivistic Vlasov (RV) transport approach in a relativistic mean-
field (RMF) theory with constant- and density-dependent
meson-nucleon vertices. We analyze various RMF models
with different coupling parameters that lead to a different
nucleon effective mass (m∗), compressibility modulus (Knm),
symmetry energy (a4), and its slope (symmetry pressure),
keeping fixed other nuclear matter saturation properties. The
aim of this paper is not to find the best agreement with
the existing data but to clarify how the various covariant
contributions to the interaction affect the collective response.
The discussion is also supported by analytical results obtained
in a relativistic linear response theory.

Among the various models we focus on the ones in
which the scalar-isovector channel has been introduced by the
coupling to an effective δ-meson field [1]. It has been shown
that such an inclusion has important effects on the equation
of state (EOS) and phase diagram of asymmetric nuclear
matter (ANM) [1], as well as on the reaction dynamics with
exotic nuclei; see the review of Ref. [2]. In fact the δ meson
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contributes to the slope and curvature of the symmetry energy
and to the neutron-proton effective-mass splitting. In particular
the influence of this coupling on the collective response
of ANM appears important, as shown in a linear response
approach in Ref. [3]. For the comparison of the results we
also consider the well-known NL3 [4,5] parametrization, very
successful for finite nuclei structure calculations, and some
density-dependent vertex models [6,7] (beyond the RMF). In
this way we aim to pin down the sensitivity of isoscalar and
isovector collective oscillations on m∗,Knm, and a4, focusing
on the interplay between isoscalar and isovector couplings. In
particular we see that the covariant structure of the isovector
part of the effective interaction will clearly show up even in
the isoscalar-monopole mode in 208Pb.

RMF models, with constant-dependent [8,9] and density-
dependent [10,11] meson-nucleon couplings, are applied to
the description of collective excitations of atomic nuclei
within the framework of the time-dependent relativistic
mean field (TDRMF) and in the self-consistent relativistic
random-phase approximation (RRPA). The monopole pre-
dictions of nonrelativistic Hartree-Fock plus random-phase
approximation (RPA) calculations, when both Skyrme and
Gogny effective interactions are used, seem to indicate
that the value of Knm should be in the range 210–
220 MeV [12,13]. In RMF models, on the other hand, results
of both time-dependent and RPA calculations suggest that
empirical giant monopole resonance (GMR) energies are best
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reproduced by an effective force with Knm 250–270 MeV
[14,15]. This difference has been pointed out as a serious
open problem [11]. A possible solution to this ambiguity was
suggested in Ref. [3] as an interplay between the effective
mass and compressibility within a discussion of the isoscalar
response in nuclear matter. Here we show the validity of
this interpretation, joining to a density dependence of the
symmetry energy, also for the spherical finite n-rich nuclei,
like 208Pb. Recent studies in fact point to the same isospin
effect; see Refs. [16–20]. In this respect we extend our
analysis by studying the influence of the inclusion of the
δ meson on both isoscalar and isovector responses in spherical
n-rich nuclei.

For the isovector dipole response we also show the
importance of the density dependence of the symmetry energy
around saturation, in particular of its slope (symmetry pres-
sure). Thus we can establish a clear link between the collective
modes of neutron-rich nuclei and the neutron distribution on
the surface of nuclei or nuclear stars.

The introduction of density-dependent vertices, following
the Dirac-Brueckner- Hartree-Fock (DBHF) estimations, does
not show relevant new effects. An analytical interpretation of
this result, again from a linear response theory for nuclear
matter, is finally presented.

II. OUTLINE OF THE MODEL

The dynamics of collective vibrations in spherical nuclei
is studied within the framework of the RV transport equation,
which describes the dynamical evolution of a semiclassical
phase-space distribution function f (x, p) under the influence
of the nuclear mean field. Binary collisions between nucleons
are not considered here. Thorough derivations of the RV
transport equations from an effective hadron-meson field
theory [21] can be found elsewhere [22–24]. The RV equation
reads (i = p, n)[

p
∗µ

i ∂µ + (
p∗

νiF
µν

i + m∗
i ∂

µm∗
i

)
∂ (p∗)
µ

]
fi(x, p∗) = 0, (1)

with the field tensor

Fµν

i ≡ ∂µ�ν
i − ∂ν�

µ

i , (2)

and effective masses and kinetic momenta m∗ and p∗µ,
respectively, specified below. The particles obey the mass-shell
condition

p
∗µ

i p∗
iµ − m∗2

i = 0. (3)

Thus, from the temporal knowledge of the phase-space
distribution function, one can calculate the time evolution of
physical quantities such as densities and fields. We remind the
reader of the meaning of the the Wigner matrix (in the spinor
space):

Fαβ(x, p) = 〈F̂αβ(x, p)〉
≡ 1

(2π )4

∫
d4R e−ipµRµ

×
〈
ψ̄β

(
x + 1

2
R

)
ψα

(
x − 1

2
R

)〉
. (4)

From the above definition it follows that the mean value of
single-particle operators can be expressed as (spinor indices
are omitted for simplicity)

〈Ô〉 =
∫

d4x

∫
d4p tr[ÔF (x, p)] (5)

where the trace runs over spin and isospin indices. The scalar
density and the vector current, for example, assume the forms

ρs(x) = 〈ψ̄ψ〉 =
∫

d4p tr[F (x, p)] (6)

jµ(x) = 〈ψ̄γµψ〉 =
∫

d4p tr[γµF (x, p)], (7)

and are used to calculate the different Lorentz components
of the mean-field potential. The nuclear mean field U is
characterized in a RMF theory by means of self-energies
as U = �s − γµ�µ · · · (higher contributions are usualy ne-
glected because of the symmetry properties of nuclear matter).

The starting point of our calculation is a non-linear
Quantum-Hadro-Dynamics (QHD-NL) model with isoscalar-
scalar and vector-meson fields σ and ω and with the inclusion
of the isovector channel through the exchange of the virtual
charged δ (scalar) and ρ (vector) mesons. The interacting
Lagrangian density has the form

Lint = ψ̄[gσσ + gδ �τ · �δ − gωγµωµ − gργ
µ�τ · �bµ]ψ

− 1
3aσ 3 − 1

4bσ 4. (8)

Minimal self-interacting terms are included in only the
σ channel, in order to cure the large value of the compression
modulus of the original Walecka linear model [21].

The mean-field approximation leads to self-energies that are
related to the expectation values of the combination of isoscalar
and isovector fields with coupling constants gσ , gω, gρ , and
gδ . The scalar and vector components of the self-energies are
generally given by

�
µ

i = gωωµ(x) ± gρb
µ(x)

{+ proton(i = p)
− neutron (i = n), (9)

�si = gσσ (x) ± gδδ(x)

{+ proton (i = p)
− neutron (i = n), (10)

with the expectation values of the fields self-consistently
calculated; see later Eqs. (20).

The self-energies characterize the in-medium properties
of the nucleons inside the hadronic environment in terms of
kinetic momenta and effective masses:

p
∗µ

i = p
µ

i − �
µ

i , (11)

m∗
i = m − �si. (12)

The density dependence of the mean field, i.e., the density
behavior of the self-energies, depends on the coupling choices
of the RMF model. Here we consider different parametriza-
tions within the nonlinear (QHD-NL) effective-field approach
and even extend it to the density-dependent hadronic (DDH)
mean-field theory [6,7,25]. In Table I the values for the
different coupling constants and the nonlinear parameters for
different sets of nonlinear Walecka (QHD-NL) models are
presented; for details see Refs. [1–5,7]. Their corresponding
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TABLE I. Coupling parameters in terms of fi ≡ (gi/mi)2

for i = σ, ω, ρ, δ, A ≡ a/g3
σ , and B ≡ b/g4

σ , Eq. (8), for various
nonlinear RMF models with the ρ and both ρ and δ mesons used
for the characterization of the isovector mean field. In the DDH
models the coupling functions are explicitly density dependent
[6,7,25].

Parameter NL1-G NL2-G NL3 NLρ NLρδ

fσ (fm2) 6.146 9.300 15.739 10.330 10.330
fω (fm2) 3.611 3.611 10.530 5.420 5.420
fρ (fm2) 1.200 1.220 1.339 0.950 3.150
fδ (fm2) 0.0 0.0 0.0 0.0 2.500
A (fm−1) −0.123 0.0824 −0.01 0.033 0.033
B 0.169 −0.0012 −0.003 −0.0048 −0.0048

nuclear matter saturation properties are given in Table II. In the
DDH models the density dependence of the coupling constants
is chosen in order to reproduce microscopic DBHF results
beyond the RMF picture; see the discussion in Ref. [25].

The choice of models with rather different nuclear matter
properties has been made on purpose, in order to investigate
the role of the effective masses, compressibility, and symmetry
energy on isoscalar (monopole) and isovector (dipole) oscil-
lations in neutron-rich nuclei. We compared various nonlinear
RMF parametrizations, in particular the Giessen sets NL1-G
and NL2-G, [26], which we extended also to simulations of
relativistic heavy-ion collisions and the widely used NL3
set [4,5], successfully applied in finite nuclei studies. The
different treatment of the isovector part of the mean field
(competition effects of the repulsive ρ field and the attractive
δ meson) is analyzed with the (NLρ, NLρδ) parameter sets [1].
The same analysis is performed within density-dependent
coupling models; the parametrizations DDH3ρ and DDH3ρδ

of Ref. [25] are used.
The dynamics of collective vibrations in spherical nuclei is

simulated in the framework of the RV Eq. (1). Its numerical re-
alization is based on the standard test-particle method, in which
the phase-space distribution function f (x, p) is represented
by a finite number of test particles of a covariant Gaussian
form [relativistic Landau-Vlasov (RLV) method]. A detailed
description of the RLV method is given in Ref. [27]; this
model is briefly discussed here. The use of a Gaussian shape
for the test particles has the advantage of smooth distribution
functions, but maintaining an accurate determination of local
quantities, which is particularly important near the nuclear
surface.

TABLE II. Nuclear matter saturation properties in the different
RMF models.

Property NL1-G NL2-G NL3 NLρ, ρδ DDHρ, ρδ

E/A (MeV) −16.0 −16.0 −16.3 −16.0 −16.0
ρ0 (fm−3) 0.145 0.145 0.148 0.160 0.153
m∗/m 0.83 0.83 0.60 0.75 0.55
Knm (MeV) 380 210 272 240 240
a4 (MeV) 30.62 30.62 37.40 30.50 33.40

The covariant Gaussians in the four-dimensional
Minkowski space are defined as

G(x; ξi) ≡
∫ −∞

−∞
dτg[x − xi(τ )]

= α

∫ −∞

−∞
dτ exp{[x − xi(τ )]2/w2}

× δ
{
[xµ − xiµ(τ )]uµ

i (τ )
}
, (13)

where ξi denotes the world line of the particle i as a whole,
τ refers to the eigentime of the test particle, and α is the
normalization constant. In the four-dimensional momentum
space a Gaussian weight of a test particle is defined by [27]

g[p∗ − p∗
i (τ )] ≡ αp exp

{
[p∗ − p∗

i (τ )]2/w2
p

}
× δ

[
p∗

µp
∗µ

i (τ ) − m∗2
i

]
, (14)

where the center of the Gaussian is assumed to be on-shell,
i.e., p∗

iµ = m∗
i uiµ, u2

i = 1, whereas the free momentum p∗
µ is

generally off-shell. The effective mass of the particle is taken
as m∗

i = m∗[xi(τ )]. The norm of the Gaussian is calculated in
the rest frame of the particle to be m∗−1

i with αp = (
√

πwp)−3,
where w and wp are the test-particle widths in position and
momentum space, respectively.

With the Gaussians of Eqs. (13) and (14) the phase-space
distribution function f (x, p∗) is expressed as

f (x,p∗) = 1

N

AN∑
i=1

∫ +∞

−∞
dτg[x − xi(τ )]g[p∗ − p∗

i (τ )]

= 1

N (πwwp)3

AN∑
i=1

∫ −∞

−∞
dτ exp{[x − xi(τ )]2/w2}

× exp
{
[p∗−p∗

i (τ )]2
/
w2

p

}
× δ

{
[xµ−xiµ(τ )]uµ

i (τ )
}
δ
[
p∗

µp
∗µ

i (τ ) − m∗2
i

]
, (15)

where N is the number of test particles per nucleon. Scalar
densities ρs and baryon currents jµ follow from the phase-
space distribution:

ρs(x) = 1

N

AN∑
i=1

∫ −∞

−∞
dτ

m∗(x)

m∗[xi(τ )]
g[x − xi(τ )], (16)

jµ(x) = 1

N

AN∑
i=1

∫ −∞

−∞
dτg[x − xi(τ )]uiµ(τ ). (17)

The equations of motion for test particle trajectories are
given by

d

dτ
x

µ

i (τ ) = u
µ

i (τ ), (18)

d

dτ
u

µ

i (τ ) = 1

m∗(xi)

AN∑
j=1

2

w2

{
g2

ω

m2
ω

uiν

[
R

µ

j (xi)u
ν
j − Rν

j (xi)u
µ

j

]

− gσ

∂σ (xi)

∂ρs

[
R

µ

j (xi) − u
µ

i uν
i Rjν(xi)

]}

× exp
[
R2

j (xi)
/
w2

]
N (

√
πw)3

± 1

m∗(xi)

2

w2
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×
ZN∑
j=1

{
g2

ρ

4m2
ρ

uiν

[
R

µ

j (xi)u
ν
j − Rν

j (xi)u
µ

j

]

− g2
δ

4m2
δ

uiν

[
R

µ

j (xi) − u
µ

i uν
i Rjν(xi)

]}

× exp
[
R2

j (xi)
/
w2

)
N (

√
πw]3

∓ 1

m∗(xi)

2

w2

×
AN∑

j=ZN+1

{
g2

ρ

4m2
ρ

uiν

[
R

µ

j (xi)u
ν
j − Rν

j (xi)u
µ

j

]

− g2
δ

4m2
δ

uiν

[
R

µ

j (xi) − u
µ

i uν
i Rjν(xi)

]}

× exp
[
R2

j (xi)
/
w2

]
N (

√
πw)3

, (19)

with

R
µ

i (x) ≡ [
xµ − x

µ

i (τ )
] − [xν − xiν(τ )]uν

i (τ )uµ

i (τ ),

which is the projection of the vector [x − xi(τ )] on the
hyperplane perpendicular to ui(τ ) [27].

Here the equations for velocities, rather than for momenta,
are given, within the assumption that the particle accelerations
are small. In this equation particles are propagated by their
respective eigentimes, and so corresponding time coordinates
xi0(τ ) can differ. To solve the problem of different time coordi-
nates a system time has been adopted for the propagation [27].

The scalar- and vector-meson fields, determined by the
scalar density ρs and the baryonic current jµ, respectively,
result from the solution of the corresponding equations in the
local density approximation (LDA):

m2
σ σ (x) + Bσ 2(x) + Cσ 3(x) = gσρs(x)

≡ gσ

∫
d4p∗ m∗(x)

E∗(x)
f (x, p∗),

ωµ(x) = gω

m2
ω

jµ(x)

≡ gω

m2
ω

∫
d4p∗p∗

µf (x, p∗),

bµ(x) = gρ

4m2
ρ

j3µ(x)

≡ gρ

4m2
ρ

∫
d4p∗p∗

µf3(x, p∗),

δ(x) = gδ

4m2
δ

ρs3(x)

≡ gδ

4m2
δ

∫
d4p∗ m∗(x)

E∗(x)
f3(x, p∗)

(20)

with f3 ≡ fp − fn.
An important issue for the description of low-energy exci-

tations within the RV equation is an appropriate initialization
of finite nuclei before starting the phase-space evolution of
the distribution function with Eq. (19). The ground state of
a spherical nucleus is randomly initialized by means of the
test particles with the covariant Gaussian shape in position
and momentum space. After the first step of a randomly

obtained initial distribution, a fit procedure in coordinate
space is performed according to realistic Thomas-Fermi
reference density distributions. The (n, p) scalar densities are
determined by the self-consistentl solution of the equations
for the effective masses m∗

p,n. With this initialization of a
given spherical nucleus the temporal evolution is described by
RLV equation (19). We used 100 test particles per nucleon for
the transport descriptions, which yields a smooth distribution
function with very good energy conservation.

For giant resonances the time dependence of collective
dynamical quantities is not periodic, as giant resonances are
generally not stationary states of the mean-field Hamiltonian
[9]. For nonrelativistic models it has been proved that the
results from the Vlasov equation are identical to results from
full quantum-mechanical calculations [the time-dependent
Hartree-Fock (TDHF) calculations] [28]. Because in the
nonrelativistic frame the RPA is the small-amplitude limit of a
TDHF calculation, one can expect that the results from the RV
equation are comparable with those from RRPA calculations of
the type discussed in Ref. [14]. In the small-amplitude limit the
energy obtained from the frequency of the oscillation coincides
with the experimental energy of the collective oscillation.

The collective dynamical variables that characterize nuclear
vibrations are defined as expectation values of single-particle
operators in the phase-space representation. For the isoscalar-
monopole vibrations, the time-dependent monopole moment
is defined as

〈r2(t)〉 = 1

A

∫
d3xr2j0(x). (21)

In this work we applied the RLV method to isoscalar-
monopole and isovector-dipole oscillations in 208Pb. The ex-
citation of an isoscalar-monopole oscillation of the initialized
nucleus in its ground state is modeled by a radial expansion.
This is done by the introduction of a new coordinate,

rmon = (1 + a)r, (22)

for each test particle. Here a is a scaling parameter, a = 0.1fm
has been used, and the deformation of protons and neutrons is
in phase.

For the isovector-dipole oscillation the following operator
has been applied [29]:

Q̂T =1
1µ = N

N + Z

Z∑
p=1

rpY1µ − Z

N + Z

N∑
n=1

rnY1µ. (23)

This means an out-of-phase shift along the z axis between
protons and neutrons. We used a scaling parameter of 1 fm ac-
cording to Eq. (23), which causes a center-of-mass separation
between protons and neutrons, while keeping unchanged the
center of mass of the whole system.

III. ISOSCALAR MONOPOLE OSCILLATIONS

The study of ISGMRs in nuclei provides an important
source of information on nuclear matter compressibility.
The complete experimental data set on isoscalar-monopole
resonances has been analyzed by Shlomo and Youngblood
[30]. In fact, within a semiempirical macroscopic approach
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of the systematics of GMR, it turns out that, when one is
starting from finite nuclei data, the nuclear matter compression
modulus Knm can be fixed only within the rather wide range
200−350 MeV. A systematic theoretical work, based on
nonrelativistic RPA methods with realistic effective interac-
tions [13], was supported the lower region of the above range,
around 210−220 MeV. At variance, relativistic approaches,
within the same small-amplitude limits, pointed to some
definitely larger values, 250−270 MeV [11]. We address
the problem, studying within a relativistic framework the
ISGMR in 208Pb, which shows a well-established GMR at
14.1 ± 0.3 MeV [31]. Moreover, 208Pb is interesting because
it represents a neutron-rich nucleus, from which we can reveal
even isovector effects.

As discussed in the previous section, the isoscalar-
monopole oscillations are analyzed within the RV transport
equation. The nuclear mean field is evaluated in the nonlinear
versions of the Walecka model and in the DDH approach;
see Tables I and II. We discuss the dependence of the GMR
on the compression modulus, by comparing the Giessen
parametrizations (NL1-G and NL2-G) with a similar value
for m∗ but different Knm, and on the effective mass (for
fixed Knm), by comparing the parametrizations of Liu et al.
with the DDH model. The latter also allows some comments
on the effect of a density dependence of the couplings around
the saturation point. These analyses are comparable with
similar studies within the framework of a TDRMF model (see

Refs. [4,14,32], and within nonrelativistic RPA calculations of
the nuclear matter compressibility by use of Gogny effective
interactions; see Ref. [13].

The influence of a different treatment of the isovector part
of the mean field is discussed in relation to the a4 differences
of the various interactions (see Table II), more specifically
focusing on the effects of the isovector, scalar δ field, i.e., by
comparison of the results of parametrizations, like NLρ,NLρδ

and DDHρ,DDHρδ, with and without the introduction of the
δ meson. We note again that the inclusion of the δ meson
in the interaction leads to a stiffer symmetry energy (around
saturation) and to a splitting between the (Dirac) effective
masses of neutrons and protons, see the review in Ref. [2]. Also
the vector component of the isovector self-energy is modified
because of the enhancement of the vector, isovector ρ meson
field roughly by a factor of 3.

Figure 1 shows the dynamical evolution of the monopole
moment of the excited 208Pb nucleus (thin curves) for those
models with fixed effective mass (NL1-G, NL2-G) and
different compression modulus. The ISGMR oscillation is
modeled by Eq. (21). The numerical simulation of the RV
equation is performed with the test-particle method of the
previous section. The limited number of test particles per
nucleon (100 in our case) leads to numerical fluctuations,
which can be seen in Fig. 1 in terms of spurious oscillations
with very low frequencies (first peaks in the Fourier energy
spectra) and in terms of a partially nonperiodic evolution of
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>
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]

2
2
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17.11 MeV

FIG. 1. (Left) Time-dependent isoscalar 〈r2〉 monopole moment and (right) the corresponding Fourier power spectra for 208Pb (thin curves)
and 90Zr (thick curves), as obtained from transport calculations with different choices of the nuclear mean field: (NL1-G, NL2-G, NL3)
nonlinear parametrizations of Refs. [4,26], respectively. The corresponding excitation energies of the ISGMR are indicated in the right-hand
panels.
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the monopole moment. This is a general nontrivial feature of
transport descriptions with test-particle methods that leads to
an artificial damping of the excitation [33]. However, because
of a rather good stability of the nucleus (until several 100 fm/c)
and a good separation of the ambiguous excitation energy of
the numerical oscillations, we conclude with the reliability of
the results presented in the following discussion.

The excitation energy of the ISGMR oscillation is very
sensitive to the nuclear matter compressibility, which is a
well-known fact. In particular, the excitation energy increases
with rising compression modulus (from NL2-G to NL1-G), as
expected.

The experimental value of 14.1 ± 0.3 MeV can be repro-
duced satisfactorily by the NL3 model [13.39 (h̄ω)]. This
result is consistent with the analysis of Ref. [14], again as
a good feature of the transport calculations, in spite of the
completely different code, in particular for the initialization
procedure.

We note, however, that the NL2-G model, with Knm =
210 MeV, leads to a centroid excitation energy [11.78 (h̄ω)]
that is not too far from that of the NL3 model, which has
a much larger compressibility, Knm = 272 MeV. Consider-
ing the other saturation properties of the NL3 force (see
Table II), this fact is pointing to two interesting implications:
(i) The dependence of the monopole frequency on the effective
nucleon mass; and (ii) the dependence on the symmetry
energy, value a4, and slope around saturation that one could
expect because the 208Pb is a neutron-rich system, asymmetry
parameter I ≡ (N − Z)/A = 0.21. We discuss in detail the
two effects in the following subsections. We note that, as
a straightforward consequence, the claimed discrepancy of
the nuclear matter compressibility modulus Knm between
relativistic and nonrelativistic models (see [11]) can be
eventually overcome.

A. Monopole frequency and effective mass

A linear response theory for nuclear matter within the
RMF frame can give some interesting hints. We can derive
a dispersion relation (see Refs. [2,3]):

1 + E∗
F

3 k2
F

[
Kpot

nm − 9 fω

k2
F

E∗2
F

(
1 − fσ

m∗

E∗2
F

ρS

)
ρB

]
ϕ(s) = 0 ,

(24)
where s is the dispersion parameter s ≡ vs/vF = ω/k · vF and
ϕ(s) is the usual Lindhard function of the Landau-Fermi liquid
theory:

ϕ(s) = 1 − s

2
ln

∣∣∣∣ s + 1

s − 1

∣∣∣∣ + i

2
πs θ (1 − s)

Here the K
pot
nm is the potential part of the nuclear matter

compressibility.
From Eq. (24) we see that the “restoring” force for

monopole oscillations is given by an effective compressibility
that is reduced for larger values of the ω meson coupling
constant. However, fω can assume very different values
depending on the chosen value for effective masses m∗. This

is easy to understand because, in the RMF limit, the saturation
binding energy has the simple form

E/A(ρ0) = E∗
F + fωρ0 − mN,

where mN is the bare nucleon mass. Thus, to have the same
saturation values of ρ0, E/A(ρ0), when we decrease m∗ we
have to increase fω. We then come to the natural conclusion
that two EOSs with different effective masses at saturation,
even if the compressibilities are the same, are expected to have
different dynamical monopole responses. In the NL2-G versus
NL3 comparison discussed here we clearly see the interplay
between compressibility and effective mass: We can get similar
monopole energies by increasing the compressibility while
decreasing the effective mass; see Table II.

This appears to be a quite general feature, present also in
nonrelativistic approaches; see Fig. 7 of Ref. [13], in which
the RPA systematics of the Gogny forces is shown: The 208Pb
breathing-mode energy does not change much if at the same
time we increase the NM compressibility and decrease the
effective mass. A similar trend has been suggested in a recent
work on nuclear compressibility within the nonrelativistic
frame [19].

B. Monopole frequency and symmetry energy

It is well known that the equilibrium properties of nuclear
matter change with isospin asymmetry, in particular the
saturation density and the corresponding EOS curvature; see
[2], Sec. II and references therein. For the compressibility shift
we have, after some algebra;

�Knm(I ) = 9ρ0

[
ρ0

d2

dρ2
− 2

d

dρ

]
εsym(ρ)

∣∣∣∣
ρ=ρ0

I 2

= [Ksym − 6L]I 2 < 0, (25)

where I ≡ (ρn − ρp)/ρ, is the asymmetry parameter. We note
the interplay between slope L ≡ 3ρ0ε

′
sym(ρ) and curvature

Ksym ≡ 9ρ0ε
′′
sym(ρ) of the symmetry energy at saturation. The

asymmetric matter becomes softer because the shift is in
general negative, because of the dominance of the slope term
L [34]; see [2] and the recent discussion in [35]. Thus, in
208Pb, are n-rich system, I = 0.21, asymmetry can affect the
isoscalar-monopole oscillations, as also noted in Refs. [16–20]
within relativistic and nonrelativistic frames.

In our NL3 versus NL2-G comparison the difference in the
a4 values (see Table II), automatically implies a difference in
the slope parameter L, because in both models the potential
symmetry energy is coming from the effective ρ-meson
coupling, which leads to a linear ρB dependence. Therefore
the larger a4 of NL3 means a larger slope at ρ0 and so a larger
reduction of the compressibility in 208Pb; see Eq. (25). Our
conclusion is that in NL3 both effects, the smaller effective
mass and larger a4, almost compensate for the much larger
Knm value, finally leading to a monopole frequency in 208Pb
that is not much different from that of the NL2-G.

We continued the analysis of the symmetry contribution,
studying the effect of a scalar-isovector channel with the in-
clusion of the δ meson both in nonlinear and density-dependent
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FIG. 2. (Left- and right-hand panels) Time-dependent isoscalar 〈r2〉 monopole moments and (middle panels) the corresponding Fourier
power spectra for 208Pb (thin curves) and 90Zr (thick curves). Transport calculations with the parameter sets are shown: (top panels) Liu-RMF
with ρ, dashed curves (right), and with ρ + δ, solid curves (left). (bottom panels) Density-Dependent model (DDH) (lower panel) with ρ,
dashed curve (right), and with ρ + δ, solid curve (left). The excitation energy of the ISGMR for each parameter set is explicitly indicated in
the Fourier power spectra and for comparison the results with ρ + δ and ρ for both parameter set 3 are shown together.

models. The results are shown in Fig. 2. The time history of
the isoscalar-monopole moment and its Fourier spectrum are
shown for the Liu sets in the upper panels with isovector
ρ + δ interaction (NLρδ, solid curve) and with ρ interaction
(NLρ, dashed curve) and similarly with density-dependent
models (lower panels). For both interactions, although the time
evolution shows similar behavior, the power spectrum presents
a net reduction in the energy centroid when one includes the
δ meson. This is a very nice indication of the dominance of the
slope of the symmetry energy on the compressibility shift. In
fact, when the δ channel is included, we have a clear increase
of the symmetry-energy slope L around saturation; see the
discussion after Eqs. (6)–(19) of Ref. [2]. For example, it is
about 20% larger in the Liu parametrizations.

Our discussion suggests that, although the inclusion of
δ meson does not produce important effects on the ground
state of finite nuclei [25], it has an interesting influence on the
collective excitations of charge asymmetric finite nuclei, in
particular 208Pb. This appears to be a good suggestion for new
experiments that aim at a better determination of the poorly
known slope (and curvature) of the symmetry term around
saturation.

In general the DDH monopole frequencies are systemati-
cally below the corresponding Liu ones. However this appears
to be mostly a joint effect of different effective masses and
symmetry energies, as already discussed for the NL3 versus

NL2-G comparison. Therefore the density dependence of the
coupling constants seems to not largely affect the monopole
response. In fact, this can be expected from the rather smooth
behavior around ρ0; see Fig. 1 of Ref. [25]. A more detailed
study is presented in Sec. V.

Finally, we like to note again that, although Liu’s NLρ

parametrization has a smaller Knm compared with that of NL3,
it produces roughly the same monopole main frequency, actu-
ally even larger. This is due to the larger effective mass jointed
to the smaller a4, see Table II. Of course we cannot compare
the NLρδ results because the δ channel is absent in NL3.

To check the interpretation of our results as being due
largely to a different density dependence of the symmetry term
that can partially balance the different compressibilities, we
performed the same calculations for a more symmetric system,
the 90Zr, I = 0.11, as also recently suggested [20]. The results
are indicated by the thick curves in Figs. 1 and 2. From Fig. 1
we see that monopole centroid for the NL3 versus NL2-G shifts
by 12% in Pb and by about 14% in the Zr case just because
the balancing effect of the symmetry contribution is reduced.

The effect is even more evident when we pass from the ρ

to the ρ + δ interactions in the isovector channel, Fig. 2. In
the case of constant couplings (NLρ and NLρδ, top of Fig. 2),
from a shift of 13% in the Pb case (thin curves) we go to 5%
for 90Zr (thick curves). A similar reduction can be seen in the
DDH interactions (lower panels).
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IV. ISOVECTOR-DIPOLE OSCILLATIONS

In the literature only RRPA calculations have been per-
formed so far to study the well-known isovector giant dipole
resonance (IVGDR) [10]. It has been reported that, for
calculations of higher multipole modes, other than monopole,
the response of a nucleus is difficult to evaluate in the
TDRMF [15]. The reason for this is that, because rotational
invariance is broken and the differential equations have to be
explicitly solved at each time step on a two-dimensional mesh
in coordinate space, it becomes difficult to keep the solutions
stable for the long times that are necessary for good accuracy.
The problem is overcome in the present RLV simulation, as
it is possible to study the time history of IVGDR within a
time-dependent framework as was done in the ISGMR case.

The experimental IVGDR energy in 208Pb is well known as
13.30 ± 0.10 MeV [36]. Because in the isovector channel
we mainly want to study the effect of the inclusion of
isovector-scalar couplings, we present results of only the
models that are parametrized with and without δ mesons.
In Fig. 3 we present the 208Pb IVGDR oscillations and
the corresponding Fourier transforms within models that
include isovector-scalar channels namely Liu (upper panels)
with ρ + δ, solid curves (left) and ρ, dashed curves (right),
and similarly for density-dependent parameter sets (lower
panels). The Fourier transforms show a good single-frequency

dominance of the isovector mode. We observe that the DDH
models, with a4 = 33.4 MeV, systematically give a larger
resonance energy compared with that of Liu-RMF sets, with
a4 = 30.5 MeV. Moreover in both models a clear reduction of
the centroid energy is observed when the δ meson is included.

It is a well-known fact that the dynamics of IVGDR is
rather sensitive to the symmetry energy of the corresponding
model, which is acting as a kind of restoring force parameter.
The drawback in previous relativistic models is the one-to-one
correspondence between a4 and IVGDR energy [10,11], and so
it is difficult to discriminate among the different interactions.
This is not the case in our analysis. The new important
conclusion that can be drawn from our results is that the
IVGDR dynamics is also sensitive to the more microscopic
covariant structure of the symmetry term, i.e., to the interplay
of various isovector channels. The physical interpretation of
this result can be given in terms of the isovector response
derived in Ref. [3], in which it is shown that the potential part
of the symmetry energy explicitly appears in the dispersion
relations with an correction term having a definite fρ, fδ

structure:

1 + 6 E∗
F

k2
F

[
Epot

sym − fρ

2

k2
F

E∗2
F

(
1 − fδ

m∗

E∗2
F

ρS

)
ρB

]
ϕ(s) = 0

(26)
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FIG. 3. Time-dependent isovector-dipole moment (center-of-mass displacement of protons and neutrons 〈Rpc.m.〉 − 〈Rnc.m.〉) and the
corresponding Fourier power spectrum for 208Pb. The parameter set of the effective Lagrangian is Liu (upper panels) with ρ dashed curves
(right), and ρ + δ, solid curves (left), and Density Dependent model (DDH) (lower panels) with ρ dashed line (right), and ρ + δ solid curves
(left). The excitation energy of the IVGDR for each parameter set is explicitly stated on the Fourier power spectrum and for comparison the
results with ρ + δ and ρ for both parameter sets are shown together.
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Note the similarity with the corresponding dispersion
relation for isoscalar modes, Eq. (24), in particular the parallel
role played by compressibility and symmetry energy in the
two collective degrees of freedom.

Now we can easily have interactions with the same a4 value
at normal density but with a rather different isovector-dipole
response. In fact, when including the δ channel, we have to
increase the fρ coupling in order to have the same symmetry
energy at saturation (δ, scalar field, is attractive in the isospin
degree of freedom; see the discussion in Sec. VI of Ref. [2]).
Then the isovector-dipole “effective restoring force” [coeffi-
cient of the Lindhard function in Eq. (26) will be reduced.

A similar effect has been pointed out in a detailed non-
relativistic Skyrme-RPA study of the giant dipole resonance
in heavy nuclei (208Pb) bu use of effective interactions with
various isovector terms [37]. A separate sensitivity of the
average resonance frequencies on the symmetry energy a4

and on its slope has been found. An intriguing consequence
of this result, already noted in Ref. [37], is that in finite
nuclei we can have an IVGDR energy decrease while the
a4 of the used effective force is increasing. This has been
usually interpreted as an effect that is due with an increase
of the symmetry slope combined with the assumption that
the IVGDR is mainly a surface mode [10,20]: A stiffer
behavior, which implies a larger a4, will give a smaller
symmetry energy at lower densities. This argument is not fully
satisfying because the transition densities show a large-volume
component, in particular for medium-heavy nuclei in which
the Steinwedel-Jensen systematics appears to work quite well
[38]. Our dispersion relation, Eq. (26), in fact shows that the
decrease of the IVGDR centroid with increasing symmetry
slope, mainly fixed by the interplay of the fρ, fδ couplings, is
a rather general result, valid even for “volume” modes.

In a covariant scheme we can see from Eq. (26) that such
behavior can be achieved just by using two isovector fields,
at the lowest order. In a sense we are suggesting a new
way, through the δ-meson term, of looking at the problem
of the connection between the isoscalar-isovector collective
response and the effective-field structure of the interacting
Lagrangian. The main objection to the introduction of a δ field
is the expected increase in the symmetry repulsion at high
baryon density, which is due to the decrease of the attractive
δ contribution that goes with the scalar density [1,2]. In fact
this is not obvious in the frame of density-dependent vertices,
as suggested by DBHF calculations [25].

In any case we remind the reader that nuclear structure
properties, like the collective motions discussed here, depend
on the symmetry-energy behavior around normal density. Just
to clarify this point we report in Table III the variation in the
slopes when we pass from the ρ to ρ + δ Lagrangians used

TABLE III. Symmetry energy around saturation in the different
ρ, ρδ models.

NLρ NLρδ DDHρ DDHρδ

γ parameter 0.90 0.99 0.80 1.05
L slope (MeV) 82.4 90.6 80.2 103.2

in this paper. In the table we show the corresponding values
of the γ exponent of the widely used parametrization of the
symmetry energy,

Esym 
 a4

(
ρ

ρ0

)γ

,

around saturation density ρ0. In correspondence the L-slope
values, see Eq. (25), are indicated.

The effect of δ coupling is not dramatic. Moreover we see
that in any case we are inside the limits (γ = 0.7–1.05) of
the best estimate of the density dependence of the symmetry
energy below saturation currently extracted from heavy-
ion reaction studies at the Fermi energies; see the recent
[35,39–41]. The L-slope values are also inside the range
L = 88 ± 25 MeV deduced from isospin transport studies
[35,41]. Further constraints will be provided by new suggested
reaction observables (see [2,42]), and new collective motion
measurements, e.g., ISGMR, and IVGDR in isotopic chains.

The previous discussion more generally indicates that a
dynamical observable can be more sensitive to the microscopic
structure of the isovector interaction than static properties. For
instance, in a careful study of the neutron distributions [43],
it is clearly shown that these “equilibrium” observables are
almost equally correlated to value, slope, and curvature of the
symmetry term.

Finally, we see that even for the isovector dipole we cannot
reveal specific contributions related to a density dependence
of the coupling constants, in the sense that all the observed
differences can be accounted for just in terms of symmetry
energies and of isovector channels. We must say that we
have not really performed an accurate analysis of this point,
e.g., comparing with RMF models with exactly the same
saturation properties. However, the subdominance of specific
contributions of density-dependent couplings can be enlight-
ened by analytical results, derived within a nuclear matter
linear response theory, as shown in the following section.

V. NUCLEAR MATTER RESPONSE WITH
DENSITY-DEPENDENT VERTICES

In previous sections, to explore the relevant physical
quantities affecting the energy centroid of the collective
modes, we compared results from various QHD models and
parametrizations. Furthermore, for guidance on the observed
effects in finite nuclei, we took advantage of the plain
dispersion relations for collective modes in nuclear matter
studied in Ref. [3] in the contest of QHD-NL models. However,
in the DDH approach, in which meson-nucleon couplings
depend on the vector (baryon) density, the relation between the
coupling functions and the compressibility can be expected to
be modified together with the dispersion relations for isoscalar
and isovector modes.

By a comparison of results with the different parametriza-
tions, we argued that the density dependences of meson-
nucleon couplings do not carry specific contributions at least
to a large extent. To corroborate such a statement, we briefly
discuss the pertinent modifications of the thermodynamic
quantities together with the linear response theory in nuclear
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matter, showing that in DDH models most of the effect is
reabsorbed by the compressibility and large corrections may
be expected only for very strong density dependences of the
couplings.

We remind the reader that the DDH model has all the
meson-nucleon couplings dependent on the isoscalar-vector
(baryon) density, defined as ρ = √

jµjµ, with jµ defined as
in Sec. II. Such a density dependence leads to rearrangement
contributions that affect the vector self-energy, adding a term
that at the mean field level reads as

R∑
µ

=
(

∂fω

∂ρ
ρ2 − ∂fσ

∂ρ
ρ2

s + ∂fρ

∂ρ
j3µj

µ

3 − ∂fδ

∂ρ
ρ2

s3

)
jµ

2ρ
. (27)

The effect of rearrangement terms on the pressure can be found
in Refs. [6,7]. More relevant for our discussion is how they
enter the compressibility:

K = 3
k2
F

E∗
F

+ 9

(
fωρB − fσ

m∗

E∗
dρs

dρB

ρB

)

+ 9

(
dfω

dρB

ρ2
B − dfσ

dρB

m∗

E∗ ρs ρB

)
+ 9

d�R
0

dρB

ρB, (28)

with

d�R
0

dρB

=
(

dfω

dρB

ρB − dfσ

dρB

dρs

dρB

ρs

)

+ 1

2

(
d2fω

dρ2
B

ρ2
B − d2fσ

dρ2
B

ρ2
s

)
. (29)

we can see that Eq. (28) reduces to the standard formula of
QHD with constant couplings when the couplings are density
independent; see Ref. [2].

The linear response in nuclear matter can be derived along
the same lines as in Ref. [3], but one has to redefine the vector
self-energy �µ, defined in Eq. (9), by adding the rearrangement
term �R

µ and consequently the effective kinetic momenta,
defined in Eq. (11). Also once, the equilibrium Wigner matrix
is consistently redefined, in the same fashion as in Ref. [3], a
dispersion relation for isoscalar modes in symmetric nuclear
matter can be written as

1 + E∗
F

3 k2
F

[
Kpot

nm − 9 fω

k2
F

E∗2
F

×
(

1 − fσ

m∗

E∗2
F

ρs + ρ2
s

E∗
F

dfσ

dρB

)
ρB

]
ϕ(s) = 0 (30)

if the terms associated with ∂ρs/∂m∗ are discarded or, in
other words, if the safe approximation dρs/dρB = m∗/E∗
is taken. We can see that most of the derivatives of the
coupling functions are reabsorbed in K

pot
nm . The difference

between Eq. (24) and (30) is the last term. With some algebra,
within the same approximation scheme, the contribution of
density-dependent terms can be reduced to a variation of the
σ coupling, from fσ to fσ − (dfσ /dρB ) ρB , in the correction
term of Eq. (24). Because of the smoothness of the fσ (ρB)
function around ρ0, we can expect an overall variation of a
few percent in the dispersion relation.

We note, however, that now the fω(ρ0) is not exactly the
same of QHD-NL (with scalar nonlinear terms), because the

rearrangement terms also affect the relation for the binding
energy, which in DDH models is given by

E/A(ρ0) = E∗
F + fωρ0 + �R

0 − mN. (31)

From Eq. (27) we see that �R
0 is given by the difference in the

density slope between the scalar and the vector field. Therefore
it may not be discarded in general, but is usually subdominant
because of the similar density dependence of the scalar
and vector coupling functions around saturation density; see
Fig. 1 of Ref. [25].

The expression for the symmetry energy is not modified
in DDH models which respect to QHD-NL [1] because the
couplings depend on only the isoscalar-vector density. Also
the dispersion relation for the isovector mode in symmetric
nuclear matter is not affected by the density dependence
of the couplings and the relation in Eq. (26) is still valid.
However, in ANM new terms appear that are proportional to
the asymmetry I and to the derivative of the ρ-like and δ-like
couplings. Therefore in DDH models for exotic nuclei there is
the possibility of having a modified relation between symmetry
energy and dipole excitation; however, an exhaustive study of
such effects goes beyond the scope of this paper.

VI. CONCLUSIONS

The aim of this work is the study of effects of the structure
of the nuclear EOSs in the isoscalar and isovector sectors
on collective excitations of asymmetric nuclei. Particular
attention has been paid to the dynamical implications of the
inclusion of a scalar-isovector contribution that is due to an
effective δ-meson coupling.

We described the dynamics of the isoscalar-monopole and
isovector-dipole oscillations in a relativistic transport approach
based on a nucleon-meson effective-field interaction. We
evaluated the time evolution of the oscillations, and then
we obtained the corresponding excitation energies from the
power spectra of the modes. The applications are to the n-rich
nucleus 208Pb, by use of a suitable choice of different effective
Lagrangians.

For the monopole mode we show an interesting m∗, the
effective mass, dependence of the centroid energy. This effect,
joined to a symmetry-energy contribution, can account for the
claimed ambiguity on the difference in compressibility moduli
that produce the experimental energy of the ISGMR in 208Pb
between relativistic and nonrelativistic microscopic models.
From the influence of the δ meson, just a systematic reduction
of the peak energy, we inferred that the symmetry-energy effect
on the isoscalar monopole is mainly due to variations of the
slope L around saturation. This is an important result, as it
could open the possibility of a direct access to this poorly
known parameter from monopole data changing the neutron
number in a fixed isotope. Moreover, we will be able to trace
back the covariant structure of the effective interaction in the
isovector channel, of relevance also for relativistic heavy-ion
collisions [25].

The isovector-dipole response is directly linked to the
isospin-dependent part of the nuclear EOS. The new result
shown here is that the IVGDR energy is decreasing when the
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δ coupling is included, keeping fixed the symmetry energy
at saturation. The effect can be easily understood from the
form of isovector dispersion relations in nuclear matter in
a relativistic linear response approach. We can then have
different IVGDR energies for effective interactions that show
the same a4 value, but with a different covariant field structure
in the isovector channel. We note the similarity to the isoscalar
case, just exchanging the roles of compressibility and isoscalar
couplings with symmetry energy and isovector couplings.

Finally we do not see large effects from the density
dependence of the effective meson couplings. This is mainly

due to the smooth behavior around ρ0. Moreover, we have
shown that some compensation is also coming from dynamical
contributions of the rearrangement terms.
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