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The ground state properties of finite nuclei are studied in the framework of a relativistic
transport approach. The kinetic equations are derived within an effective nucleon-meson
field theory in the Relativistic Mean Field (RMF) scheme. The time evolution of the

binding energies and the nuclear radii are obtained for spherical nuclei with various
sets of Lagrangian parameters and compared with those of Relativistic RPA results for
208Pb. The comparison shows reasonably well results.

1. Introduction

Both the relativistic and non-relativistic transport models have been extensively

used to study heavy ion collisions (HIC)1,2 and the collective dynamical properties

of a single nucleon.3,4 In these models the evolution of the one-body phase-space

distribution of the colliding nuclei or a single nucleus is described by semi-classical

transport equations of the Boltzmann type. These equations consist of a mean-field

potential part where particles propagate and a collision part for the scattering of the

particles. In the case of excluding or neglecting the collision part, one obtains the

Vlasov equation. The one-body phase-space distribution function f(r, p, t) entering

the Vlasov equation is the Wigner transform of the one-body density matrix ρ(r, p, t)

which satisfies the Time Dependent Hartree Fock (TDHF) equation.5,6 Although

in HIC simulations one interests in the final state observables which are assumed or

approximated to be independent of the initial configurations of the colliding nuclei,

it has been pointed out that HIC simulation tests with different initial configurations

show that some observables might be sensitive to the initialization of participants.7

As it is evident from the definitions of the transport models, the most accurate way

would be to generate the ground state configuration from the Wigner transform of

a self-consisted solution for the ground state. But such a calculation is still missing

in the literature.

The commonly used method to obtain the ground state of a nucleus is to repre-

sent the one-body phase-space distribution function in terms of the sum of elemen-

tary functions known as test particle ansatz, following Wong.8 In general pointlike
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test particles of the δ-functions or gaussian functions are chosen for both in coordi-

nate and momentum space representations of the phase-space distribution function.

For example, the initial configuration in position space, for the nucleus under con-

sideration, is obtained by randomly distributing the test particles within a sphere of

radius R. This radius is determined such that the single nucleus remains stationary

for long enough time compare to the time scale of the physical property that is

under investigation.

In this work we study the ground state properties of 208Pb using the Relativistic

Vlasov method (RV) in a Relativistic Mean Field (RMF) theory. We applied various

RMF models with different coupling parameters which lead to a different nucleon

effective mass (m∗), compressibility modulus (Knm), symmetry energy (a4), keeping

fixed other nuclear matter saturation properties.

Among those models we focus on the ones where the scalar isovector channel has

been introduced by the coupling to an effective δ-meson field.9 It has been shown

that such inclusion has important effects on the equation of state (EOS) and phase

diagram of asymmetric nuclear matter (ANM), as well as on the reaction dynamics

with exotic nuclei, see the review.1 In fact the δ-meson brings contributions to the

slope and curvature of the symmetry energy and to the neutron-proton effective

mass splitting. In particular the influence of this coupling on the collective response

of (ANM) appears important, as shown in a linear response approach in Ref. 10.

For the comparison of the results we have also considered the well known NL311,12

parametrization, very successful for finite nuclei structure calculations. In this way

we aim to pin down the sensitivity of the ground state properties focussing on the

interplay between isoscalar-isovector couplings.

Relativistic mean field models, with constant13,14 meson-nucleon couplings, have

been applied to the description of ground state properties of atomic nuclei in the

framework of the self-consistent relativistic random phase approximation (RRPA).

In this respect we compare the relativistic Vlasov calculation results with the RRPA

for the ground state in spherical n-rich nuclei.

2. Outline of the Model

The ground state of a spherical nuclei is studied in the framework of the relativistic

Vlasov (RV) transport equation, which describes the dynamical evolution of a semi-

classical phase space distribution function f(x, p) under the influence of the nuclear

mean field. Thorough derivations of the RV transport equations from an effective

hadron-meson field theory,15 can be found elsewhere.5,16,17 The RV equation reads

(i = p, n):

[p∗µ
i ∂µ + (p∗νiFµν

i +m∗

i ∂
µm∗

i )∂
(p∗)
µ ]fi(x, p

∗) = 0 (1)

with the field tensor

Fµν
i ≡ ∂µΣν

i − ∂νΣµ
i (2)
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and effective masses and kinetic momenta m∗ and p∗µ, respectively, specified below.

The particles obey the mass-shell condition

p∗µ
i p∗iµ −m∗2

i = 0 . (3)

Thus, from the temporal knowledge of the phase space distribution function one

can calculate the time evolution of physical quantities such as densities and fields.

We remind the meaning of the the Wigner matrix (in the Spinor space)

Fαβ(x, p) = 〈F̂αβ(x, p)〉

≡ 1

(2π)4

∫

d4Re−ipµRµ

〈

ψ̄β

(

x+
1

2
R

)

ψα

(

x− 1

2
R

)〉

. (4)

From the above definition it follows that single-particle operators can be expressed

as (spinor indices will be omitted for simplicity)

〈Ô〉 =

∫

d4x

∫

d4p tr(ÔF (x, p)) (5)

where the trace runs over spin and isospin indices. The scalar density and the vector

current, for example, assume the form

ρs(x) = 〈ψ̄ψ〉 =

∫

d4p tr(F (x, p)) (6)

jµ(x) = 〈ψ̄γµψ〉 =

∫

d4p tr(γµF (x, p)) , (7)

and will be used to calculate the different Lorentz components of the mean field

potential.

The nuclear mean field U is characterized in a RMF theory by means of self

energies in the form U = Σs − γµΣµ · · · (higher contributions are usualy neglected

due to symmetry properties of nuclear matter). In a nonlinear (QHD-NL) model

with isoscalar scalar and vector meson fields σ and ω and with the inclusion of

the isovector channel through the exchange of the virtual charged δ (scalar) and

ρ (vector) mesons, the mean field approximation leads to self energies which are

related to the expectation values of the combination of isoscalar and isovector fields

with coupling constants gσ, gω, gρ and gδ. The scalar and vector components of the

self energies are generally given by

Σµ
i = gωω

µ(x) ± gρb
µ(x)

{

+ proton(i = p)

− neutron (i = n)
(8)

Σsi = gσσ(x) ± gδδ(x)

{

+ proton (i = p)

− neutron (i = n)
(9)

with the expectation values of the fields self-consistently calculated, see Eq. (19).

The self energies characterize the in-medium properties of the nucleons inside

the hadronic environment in terms of kinetic momenta and effective masses

p∗µ
i = pµ

i − Σµ
i (10)
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Table 1. Coupling parameters in terms of fi ≡ (gi/mi)
2 for i = σ, ω, fi ≡ (gi/2mi)

2 for
ρ, δ, A ≡ a/g3

σ and B ≡ b/g4
σ for various nonlinear RMF models using the ρ and both ρ

and δ mesons for the characterization of the isovector mean field. In the DDH models the
coupling functions are explicitly density dependent.18,20,22

Parameter NL1-G NL2-G NL3 NLρ NLρδ

fσ(fm2) 6.146 9.300 15.739 10.330 10.330

fω(fm2) 3.611 3.611 10.530 5.420 5.420

fρ(fm2) 1.200 1.220 1.339 0.950 3.150

fδ(fm2) 0.0 0.0 0.0 0.0 2.500

A(fm−1) −0.123 0.0824 −0.01 0.033 0.033

B 0.169 −0.0012 −0.003 −0.0048 −0.0048

Table 2. Nuclear matter saturation properties in the different RMF models.

Property NL1-G NL2-G NL3 NLρ, ρδ DDHρ, ρδ

E/A (MeV) −16.0 −16.0 −16.3 −16.0 −16.0

ρ0 (fm−3) 0.145 0.145 0.148 0.160 0.153

m∗/m 0.83 0.83 0.60 0.75 0.55

Knm (MeV) 380 210 272 240 240

a4 (MeV) 30.62 30.62 37.40 30.50 33.40

m∗

i = m− Σsi . (11)

The density dependence of the mean field, i.e. the density behavior of the self

energies, depends on the coupling choices of the RMF model. Here we consider dif-

ferent parametrizations within the nonlinear (QHD-NL) effective field approach. In

Table 1 the values for the different coupling constants and the nonlinear parameters

for different sets of nonlinear Walecka (QHD-NL) models are presented, for details

see Refs. 1, 9–11 and 18. Their corresponding nuclear matter saturation properties

are given in Table 2.

The choice of models with rather different nuclear matter properties has been

done on purpose, in order to investigate the role of the effective masses, com-

pressibility and symmetry energy on the ground state properties in neutron-rich

nuclei. We have compared various nonlinear RMF parametrizations, in particular

the Giessen sets NL1-G, NL2-G,19 extended also to simulations of relativistic heavy

ion collisions, and the widely used NL3 set,11,12 successfully applied in finite nuclei

studies. The different treatment of the iso-vector part of the mean field (competition

effects of the repulsive ρ field and the attractive δ meson) is analyzed in detail using

the (NLρ, NLρδ) parameter sets.9 The same analysis is performed within density

dependent coupling models, the parametrizations DDH3ρ and DDH3ρδ of Ref. 20

have been used.

The dynamics of ground state properties in spherical nuclei is simulated in the

framework of the relativistic Vlasov equation (1). Its numerical realization is based
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on the standard test particle method, where the phase space distribution function

f(x, p) is represented by a finite number of test particles of a covariant Gaussian

form (Relativistic Landau-Vlasov (RLV) method). A detailed description of the

RLV method is given in Ref. 21, this model will be briefly discussed here. The

use of a Gaussian shape for the test particles has the advantage of smooth dis-

tribution functions, but maintaining an accurate determination of local quantities,

particularly important near the nuclear surface.

The covariant Gaussians in the four-dimensional Minkowski space are defined

as

G(x; ξi) ≡
∫

−∞

−∞

dτg(x − xi(τ))

= α

∫

−∞

−∞

dτ exp((x− xi(τ))
2/w2)δ[(xµ − xiµ(τ))uµ

i (τ)] (12)

where ξi denotes the world line of the particle i as a whole, τ refers to the eigentime

of the test particle and α is the normalization constant. In the four-dimensional

momentum space a gaussian weight of a test particle is defined by21

g(p∗ − p∗i (τ)) ≡ αp exp((p∗ − p∗i (τ))
2/w2

p)δ[p
∗

µp
∗µ
i (τ) −m∗2

i ] (13)

where the center of the gaussian is assumed to be on-shell i.e. p∗iµ = m∗

i uiµ, u2
i = 1,

whereas the free momentum p∗µ is generally off-shell. The effective mass of the

particle is taken as m∗

i = m∗(xi(τ)). The norm of the gaussian is calculated in the

rest frame of the particle to be m∗−1
i with αp = (

√
πwp)

−3, where w and wp are

the test particle widths in position and momentum space.

With the gaussians of (12) and (13), the phase space distribution function

f(x, p∗) is expressed as

f(x, p∗) =
1

N

A·N
∑

i=1

∫ +∞

−∞

dτg(x − xi(τ))g(p
∗ − p∗i (τ))

=
1

N(πwwp)3

A·N
∑

i=1

∫

−∞

−∞

dτ exp((x − xi(τ))
2/w2)

× exp((p∗ − p∗i (τ))
2/w2

p)

× δ[(xµ − xiµ(τ))uµ
i (τ)]δ[p∗µp

∗µ
i (τ) −m∗2

i ] (14)

where N is the number of test particles per nucleon. Scalar densities ρs and baryon

currents jµ follow from the phase space distribution

ρs(x) =
1

N

A·N
∑

i=1

∫

−∞

−∞

dτ
m∗(x)

m∗(xi(τ))
g(x− xi(τ)) (15)

jµ(x) =
1

N

A·N
∑

i=1

∫

−∞

−∞

dτg(x − xi(τ))uiµ(τ) . (16)
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The equations of motion for the test particle trajectories are given by

d

dτ
xµ

i (τ) = uµ
i (τ) (17)

d

dτ
uµ

i (τ) =
1

m∗(xi)

A·N
∑

j=1

2

w2

[

g2
ω

m2
ω

uiν(Rµ
j (xi)u

ν
j −Rν

j (xi)u
µ
j )

− gσ

∂σ(xi)

∂ρs

(Rµ
j (xi) − uµ

i u
ν
iRjν(xi))

]

exp(R2
j (xi)/w

2)

N(
√
πw)3

± 1

m∗(xi)

2

w2

Z·N
∑

j=1

[

g2
ρ

4m2
ρ

uiν(Rµ
j (xi)u

ν
j −Rν

j (xi)u
µ
j )

− g2
δ

4m2
δ

uiν(Rµ
j (xi) − uµ

i u
ν
iRjν(xi))

]

exp(R2
j (xi)/w

2)

N(
√
πw)3

∓ 1

m∗(xi)

2

w2

A·N
∑

j=Z·N+1

[

g2
ρ

4m2
ρ

uiν(Rµ
j (xi)u

ν
j −Rν

j (xi)u
µ
j )

− g2
δ

4m2
δ

uiν(Rµ
j (xi) − uµ

i u
ν
iRjν(xi))

]

exp(R2
j (xi)/w

2)

N(
√
πw)3

(18)

with

Rµ
i (x) ≡ (xµ − xµ

i (τ)) − (xν − xiν(τ))uν
i (τ)uµ

i (τ) ,

projection of the vector (x− xi(τ)) on the hyperplane perpendicular to ui(τ).
21

Here the equations for velocities, rather than for momenta, are given, within the

assumption that the particle accelerations are small. In this equation particles are

propagated by their respective eigentimes and so corresponding time coordinates

xi0(τ) can differ. In order to solve the problem of different time coordinates a

system time has been adopted for the propagation.21

The scalar and vector meson fields, determined by the scalar density ρs and

the baryonic current jµ, respectively, result from the solution of the corresponding

equations in the Local Density Approximation (LDA)

m2
σσ(x) +Bσ2(x) + Cσ3(x) = gσρs(x) ≡ gσ

∫

d4p∗
m∗(x)

E∗(x)
f(x, p∗)

ωµ(x) =
gω

m2
ω

jµ(x) ≡ gω

m2
ω

∫

d4p∗p∗µf(x, p∗)

bµ(x) =
gρ

4m2
ρ

j3µ(x) ≡ gρ

4m2
ρ

∫

d4p∗p∗µf3(x, p
∗)

δ(x) =
gδ

4m2
δ

ρs3(x) ≡
gδ

4m2
δ

∫

d4p∗
m∗(x)

E∗(x)
f3(x, p

∗) . (19)

with f3 ≡ fp − fn.
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An important issue for the description of nuclear ground state within the RV

equation is an appropriate initialization of finite nuclei, before starting the phase

space evolution of the distribution function with Eq. (18). The ground state of a

spherical nucleus is randomly initialized by means of the test particles with the

covariant gaussian shape in position and momentum space. After the first step of

a randomly obtained initial distribution, a fit procedure in coordinate space is per-

formed according to realistic Thomas–Fermi reference density distributions. During

this procedure the proton and neutron distributions are fitted separately by satis-

fying the empirical values for the asymmetry and the surface thickness parameters,

respectively. In the Thomas–Fermi calculation the scalar densities are determined

by solving self-consistently the equations for the effective masses m∗

p,n. With this

initialization of a given spherical nucleus the temporal evolution is described by the

RLV equation (18). We have used 100 test particles per nucleon for the transport

descriptions, which yields a smooth distribution function with a very good energy

conservation.

3. Results and Discussion

The first observation in the initialization is to decide the widths of gaussians in

position or momentum space. Since they are related by the minimum uncertainity

relation σxσp = ~/2 it is enough to decide one of them. Here we consider the σx

width in position space. There is no way from the formalism to decide its value. In

the literature21 the gaussian in momentum space is interpreted as an approximation

to the spectral function of the particles and for the width of the spectral function

the self energies from Dirac–Brueckner calculations is taken23 and compared to the

gaussian parametrization in the rest frame of the particle. The fit for the value of

σp for a particle with a mean momentum of pi = 650 MeV in nuclear matter of

density 3/2 times the saturation density for the compression phase in a heavy-ion

collision is found to be σp = 0.4 fm−1 which corresponds to σx = 1.25 fm (~ = 1).

Since this value of σx obtained for the HIC case in a larger nuclear density, we

tune this value for the ground state of 208Pb by directly observing its effect on the

stability of ground state. For this reason we work for different values of σx from

0.8 fm to 1.4 fm. The results are shown in Fig. 1. Where we see that the stabilty

increases significantly as we go from 0.8 fm value to 1.35 fm for σx and start to

lose the stability after that value as we reach σx = 1.4 fm. Of course there are no

dynamical reasons from the equation of motion for this result, but is has to be from

numerical origin related to the packing of gaussians in to a finite space to get a

certain density distribution over nuclear radius.

After deciding the width of gaussians now we can turn to find the relativis-

tic mean field parametrization that produce the most stable ground state and an

experimentally correct rms radius and binding energy. For this reason we have ap-

plied the model parameters in Table 1 for which the nuclear matter properties of

the model parameters are shown in Table 2. The results of the time evaluation of
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Fig. 1. The time evaluation of ground state rms radius of 208Pb for different σx values.

the ground state rms radius and the average value over time 〈r〉 and the average

binding energy per nucleon 〈E〉 are shown in Fig. 2. The first observation in the

ground state properties is that the contribution of delta meson is negligible. So the

nonlinear parametrization of NLρ and NLρδ gives the same ground state proper-

ties. We also observe that the density dependent model DDH is also producing very

similar results to NLρ. We show them in the down-right panel in Fig. 2. In general

we see that all the model parameters produce very similar rms radius and binding

energy per nucleon. The success of NL3 parametrization in producing the binding

energy per nucleon with the RPA results of Ref. 12 and the most close value to

the experimental rms radius of value is striking. Although the general behavior of

the time evaluation of rms radius show similar behavior, the oscilation amplitude

and frequency change among models. The lowest oscillation amplitude and highest

frequency of NL1-G (upper right panel) and largest oscillation amplitude of NL2-G

(lower left panel) are attributed to the compressibility of the corresponding mod-

els namely NL1-G being the highest (380 MeV) and NL2-G being the lowest (210

MeV). The other models (NL3, NLρ) having a comparatively close compressibil-

ity values (272 MeV, 240 MeV) being between NL1-G and NL2-G parametrization

show a behavior somehow in between these two extreme cases. For a detailed dis-

cussion for the relation between compressibility and nuclear monopole oscillations

see Ref. 3.

In order to watch the stability in detail we show the time evaluation of the

proton-neutron and total density starting from the beginning and taking a snapshot
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Fig. 2. The time evaluation of the ground state rms radius and calculated average ground state
energy (〈E〉) and average rms radius of (〈r〉) 208Pb for different RMFT coupling parameter sets.
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Fig. 3. The snapshots of the proton-neutron and total density at every 25 fm/c starting from
the beginning (panel 1.1) and up to 350 fm/c (panel 4.3), and the average of all densities over
all time steps and compared to the initial distributions (initial distributions is shown with dotted
lines, panel 4.4).
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of every 25 fm/c up to 350 fm/c in Fig. 3. At the end, we average the densities

over all time steps and make a comparison with initial distributions. We observe

that except a small increase in central part of the neutron distribution we obtain a

steady ground state.

4. Conclusions

Aim of this work has been to study the properties of the ground state of spherical

nuclei in a relativistic transport approach based on a nucleon-meson effective field

interaction. We have evaluated the time-evolution of the ground state obtaining its

stability, energy and rms radius. Effects of different RMFT parametrization sets

on the properties of spherical nuclei 208Pb are studied in detail for both in the

isoscalar and isovector sector. Particular attention has been put on the dynamical

implications of the inclusion of a scalar isovector contribution due to an effective

δ meson coupling. But no significant contribution is found for the ground state

n-rich 208Pb nuclei. Although all the parameter sets show similar ground state

dynamical behavior the NL3 paramtrization is shown to be the RMF parameter

set that produce the most stable ground state and the most accurate ground state

energy and rms radius results very close to the values obtained by RRPA results.

Finally we do not see large effects from the Density Dependence of the effective

meson couplings and we obtained same ground state properties as NL-ρ set.
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