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Abstract 
The motion of an individual electron in a FEL in a field configuration 
consisting of an ideal quadrupole-wiggler field and uniform axial-guide 
field, is shown to be nonintegrable in Hamiltonian formulations and can 
become chaotic for certain initial conditions. The presence of chaos, which 
is induced by the transverse spatial inhomogenieties in the wiggler field; 
and the self-fields produced by the space charge and current, poses limits 
on the wiggler field amplitude and the beam size for beam propagation in 
Free-Electron Laser operation. Upon plotting Poincart surface-of-section 
maps, it is shown that the electron dynamics is chaotic. 

1. Introduction 

The Free-Electron Laser (FEL) is a classical device which 
amplifies short wavelength radiation by stimulated emission 
using a beam of relativistic electrons, passing through a 
transverse periodic magnetic field, known as “undulator” or 
“wiggler”. 

The undulator may be a helical field, produced by a 
bifilar helical winding, which will guide the electron along a 
nearly helical orbit, or it may be a “linearly polarized” field 
made by a set of alternating polarity magnets. On the other 
hand the undulator may be an electrostatic device [l]. 
Usually an axial guide magnetic field is added to confine the 
electrons against their mutual repulsion. 

Theoretical investigations of FEL have been confined, 
principally, to the linear regime, however, a full nonlinear 
treatment is required to describe the interaction through the 
linear stages of saturation [2, 31. 

In principle, one can generate a periodic magnetic field by 
a helical winding of 21 wires (I = 1,2, . . .). A magnetic field of 
this kind exhibits a helical symmetry and depends on 
dimensionless coordinates (kr), and (4 - kz). The case 1 = 2 
corresponds to a quadrupole magnetic field. This kind of 
magnetic field requires two pairs of helical windings with 
current flow in opposite directions in adjacent windings. 
Moreover, it can be produced by an array of permanent 
magnets on a circular guide. One can show that the field 
lines of these kind of fields, are similar to line forces of a 
quadrupole magnet continuous rotating along the z-axis. A 
plot of the magnetic surfaces with different mean-radii for 
the quadrupole magnetic field is shown in Fig. 1. 

Recently, an FEL which employs a continuously rotating 
quadrupole magnetic field as a pump has been suggested. A 
quadrupole magnetic field is widely used in conventional 
accelerators as well as in high current accelerators. Lately, 
quadrupoles have been utilized in ETA/FEL experiment to 
replace the axial focusing magnetic [4]. 

Hamiltonian chaos has been an active area of research in 
physics and applied sciences. The classic work of 

Kol’mogorov, Arnol’d and Moser (KAM) shows that the 
generic phase space of nonintegrable classical Hamiltonian 
systems, subject to small perturbations, contains three types 
of orbits : stable periodic orbits, stable quasi-periodic orbits 
(KAM tori), and chaotic orbits [SI. Unlike three- 
dimensional nonintegrable Hamiltonian systems in which 
different chaotic regions are isolated by the KAM tori, 
higher-dimensional, nonintegrable Hamiltonian systems 
exhibit Arnol’d diffusion behaviour, so that chaotic orbits 
can reach almost everywhere in phase space. As the pertur- 
bation increases in strength, the KAM tori destabilize and 
become discrete fractal sets. In wave-particle interaction, the 
breakdown of the last global KAM torus results in stochas- 
tic acceleration of particles [SI. 

It is understood that chaotic behaviour results from 
strong dependence on initial conditions. If any error 
develops in time, then nearby trajectories diverge exponen- 
tially and the orbit depends sensitively on the initial state. A 
very small randomness (due to an error of measurement for 
instance) in the initial state is sufficient for this to occur [7] 

The Hamiltonian with N degrees of freedom is integrable 
if it has N independent constants of motion in involution, 
e.g. the Poisson bracket of any two of them is zero. If the 
number of constants is less than N ,  the motion is nonin- 
tegrable and part of the phase space is chaotic in the sense 
that adjacent initial conditions lead to exponentially diver- 
gent trajectories [5 ,  6, 81. There are, however, typically 
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Fig. 1. A plot of the magnetic-surfaces of a quadrupole magnetic field for 
different mean-radii. 
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regular regions of phase space as well, the (KAM) surfaces 
that limit the chaotic parts of phase space. 

Earlier investigations of chaos in Free-Electron Lasers 
have focused on chaotic behaviour in particle orbits induced 
by sideband and radiation fields. Chen and Schmidt [8], 
have shown that the electromagnetic signal wave can also 
cause chaotic electron motion in the combined helical- 
wiggler and axial-guide field of configuration. 

This work examines the motion of relativistic test electron 
in a quadrupole-wiggler Free-Electron Laser in the absence 
of electromagnetic signal wave, where the Hamiltonian is 
found to be nonintegrable, leading to chaotic motion. Of 
particular interest are the effects of transverse gradients in 
the beam-self-produced fields and the quadrupole-wiggler 
field strength on the dynamics of the test electron. To 
analyse the self-field effects of an intense electron beam, we 
consider the particle motion in the combined configuration 
consisting of an ideal (constant-amplitude) quadrupole- 
wiggler field B,q, a uniform axial-guide field Bo,  and the 
self-electric and self-magnetic fields produced by space 
charge and current of the electron beam. 

In the limit where self fields are negligibly small, it is 
found that the onset of chaos for electron orbits occurs 
whenever the dimensionless parameter a, = eB,/mc2k, 
exceeds the critical value a:. This suggests there is an upper 
bound on the wiggler field strength for FEL operation. 

The chaotic behaviour is demonstrated by generating the 
Poincare surface-of-section plots to determine the spread of 
chaos into the region of phase space where electron beam is 
located, and then to find the parameter regions for which 
chaotic behaviour is harmful for the opera of FEL. 

The organization of this paper is as follows: In Section 2, 
a general formulation of the dynamical problem is given, 
canonical transformations are performed, the problem of 
integrability is discussed and Hamilton’s equations of 
motion are derived, and the trick of Hen6n is used to find 
simply but accurately the intersection of numerically inte- 
grated trajectories with surface of section, a computer simu- 
lation is developed, and Poincar6 surface-of-section plots 
show the development of chaos by increasing the 
quadrupole-wiggler field amplitude one time, and increasing 
the beam density another time and determine the onset of 
chaos for the system, which is harmful for efficient FEL 
operation. Finally, Section 3 is left for our comments, con- 
clusions and suggestions for future work. 

2. Formulation of the problem 
2.1. Configuration 

One can generate a periodic magnetic field by a helical 
winding of two pairs of winding, we call this field a 
quadrupole-wiggler magnetic field because it requires two 
pairs of helical windings with current flow in opposite direc- 
tions in adjacent windings. A field of this kind exhibits 
helical symmetry, i.e. in cylindrical coordinate system the 
field depends only on the coordinates r and t3 = 4 - az; 
a = 2n/L, L is helix pitch. Generally, a second field in the 
axial direction is added to confine the beam against their 
natural repulsion. Figure 2 illustrates schematically the 
quadrupole wiggler configuration. The conductors are 
wound on the guide tube in a spiral pattern, with currents 
alternating in direction. The quadrupole wiggler can be pro- 
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Fig. 2. A FEL configuration with a quadrupole wiggler. 

duced by the currents as shown or by an array of permanent 
magnets on the circular guide which has the advantage of 
no ohmic dissipation. 

The vector potential solution of the static Maxwell equa- 
tions in vacuum for a helical axial-guide field is in the form 
c91 
A = A ,  + A .  = A,&, + A,&,, (1) 

12(2k ,~)  COS 2(4  - k , ~ ) ,  A , =  -- B,  
k i  r 

(3) 
Bor B,  

2 k, 
A ,  = - + - 1;(2k, r )  sin 2(4  - k ,  z), 

where B,  is the wiggler amplitude, k,  = 27~12, is the wave 
number, Bo is the axial field amplitude, Z2 is the modified 
Bessel function and 1; is its derivative. 

Then, the static magnetic fields are: 

B, = 2B, 1;(2k, r )  cos 2(4  - k ,  z), (4) 

B, = Bo + 2 8 ,  12(2k, r) sin 2(4 - k, z). (6) 
It is readily shown that the wiggler magnetic fields satisfies 
the vacuum Maxwell equation V x B, = 0. These fields 
have the form of a right-handed screw in space. Radial plots 
of these fields were shown in Fig. 3; where the wiggler field 
goes to zero at r = 0. 

2.2. Selffields 
One of the main purposes of this work is to examine the 
regular and irregular motion of an individual test electron in 
the combined applied field configuration and self-fields. In 
this regard, one has to find the self-electric and self-magnetic 
fields generated by the beam space charge and current. The 
electron beam is assumed to have uniform density nb(r) = no 
and a uniform axial current j ,  = enOub (ub = const. is the 
average axial velocity of the beam). It is readily shown from 

oktaydogdu
Comment on Text
Bu bölüm, C.Chen,R.C.Davidson, Nuc.Ins.Meth.Phys.Research A, 296 (1990) 471 makalesinin giriş bölümünden bire bir alınmış ve referans verilmemiştir


oktaydogdu
Comment on Text
Bu bölüm, C.Chen,R.C.Davidson, Phys.Rev.A, 43 (1991) 5541 makalesinin giriş bölümünden bire bir alınmıştır.

oktaydogdu
Comment on Text
Bu cümle, B.Levush,T.M.Antonsen,W.M.Manheimer,P.Sprangle, Physics Fluids 28 (1985) 2273 makalesinin giriş bölümünden alınmıştır.

oktaydogdu
Comment on Text
Bu cümle, B.Levush,T.M.Antonsen,W.M.Manheimer,P.Sprangle, Physics Fluids 28 (1985) 2273 makalesinin giriş bölümünden alınmıştır.

oktaydogdu
Comment on Text
Bu bölüm, C.Chen,R.C.Davidson, Phys.Rev.A, 43 (1991) 5541 makalesinin 2. bölümünden bire bir alınmıştır (1 nolu denklemin altı).

oktaydogdu
Comment on Text
Bu bölüm, C.Chen,R.C.Davidson, Phys.Rev.A, 43 (1991) 5541 makalesinin 2. bölümünden bire bir alınmıştır (2 nolu denklem, öncesi ve sonrası).



Chaotic Electron rrajectories in Quadrupole Wiggler Free Electron Laser 127 

which are called the Hamilton’s equations of motion, where 
the relativistic Hamiltonian is given by: 

(17) 

where the canonical momentum, P, is related to the mecha- 
nical momentum, p, by P = p  - (e/c)A, and y = [l 
+ ( p / m ~ ) ~ ] ” ~  is the relativistic mass factor. Then, the equa- 
tions of motion for a test electron within the beam 0 < r < 
i b  can be derived for the Hamiltonian defined in eq. (17), 
with the vector potential A(x)  given in eq. (13). and the elec- 
trostatic potential Q(x) defined in eq. (14). 

Because H is independent of time, the Hamiltonian is a 
constant of motion, i.e., 

H = {m2c4 + [cP + eA]z)’iz - e0 ymc2 - e@,, 

H = ymc2 - eo, = const. (18) 

which corresponds to the conservation of total energy 
(kinetic plus potential energy) of the test electron. 

For notational convenience in the subsequent analysis we 
introduce the dimensionless potentials J(x) and &,(x), and 
Hamiltonian I? is defined by 

ro 
Fig. 3. The radial dependence of the magnetic fields for a quadrupole 
wiggler. 

H A = - .  e&) @%(x) A(x) = - O,(x) = ~ mc2 ’ mc2 ’ mc2 (19) 
the steady-state Maxwell equations that [lo], 

In addition, the notation 

eB0 , a,=- a, = - 
mc2k, mc2k, 
eB, 

m a 2  
2e 

E, = - - (xi?, + @,,), (7) 

B, = 
2e is introduced, where a, is the dimensionless measure of the 

wiggler field amplitude (B,), and a. is the dimensionless 
measure of the axial-guide field (Bo). Because the electric 
and magnetic self-fields E&) and B,(x) are proportional to 
W: = (4m0 e2/m) in the beam interior (0 < r e rb), it is also 
useful to introduce the dimensionless parameter 

in the beam interior (0 < r e rb). In eqs (7) and (S) ,  m is the 
electron rest mass, B, = uz/c, and W: = (4moe2/m) is the 
plasma frequency. 

E,@) = -VWx), (9) 

B,(x) = v x A,(x), (10) 
where 

It is convenient to represent the self fields as 

w2 
E ,  = - 

c2ki 

which is a measure of the strength of equilibrium self-fields. 
Combining eqs (19-(21) with eqs (l l) ,  (13) and (17) gives m a 2  m u 2  rz a?&) = - (x2 + yZ) = 

4; , 4e A = {l + [; + A]2}1/2- &,, 
A b )  = B z  @ S W Z  * (12) 
In this sense, the total vector and scalar potentials are given where 
by 

44 = AO(4 + 444 + AS(4 
and 

= Os(x). 

2.3. The Hamiltonian representation 
Frequently, equations of motion of 
written quite simply in Hamiltonian 

For k,r e 1, we expand l2  to second order in k,r and 
the normalized wiggler vector potential &(x) becomes 

COS 2(4 - k,~)e^, A a,k,r A(x)  = - - 
2 

the particle can be 
form, in which the 

system of three second-order equations for the coordinates 
q i ,  is represented by a system of six first-order equations for 
the three coordinates qi and the three momenta p i :  sin 2(4 - k, z)8+, +- a, k, r 

2 

where 

(26) 
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2.5. Equations of motions 
The Hamilton's equations of motion derived from the Ham- 
iltonian in eq. (31) have the form: 

is used for p < 1. This expansion is used for analytical trac- 
tability, and is not used in the computer simulation. 

2.4. Strong pump regime 
The transverse field inhomogeneities in eq. (25) can play an 
important role in altering the electron motion when the 
wiggler field amplitude, a,, and/or the normalized trans- 
verse displacement, k, r ,  becomes sufficiently large [ 111. In 
this section we are interested in the limit where the space 
charge is negligibly small E, + 0 (0, = 0) and k,r e 1, while 
a, is suficiently large. 

In this sense the Hamiltonian is written in the form 

m, I, 9, k,  z ;  P, , P, 9 P,) 

cos 2% , A a,k,r 
P, - - 1 2 

1 - l {  1 [ P  a k r 
a,k,r sin 2% -_  - L+ole +- 

y k,r k,r 2 2 

dP, a 8  
dz w, 4 
-= -- 2 

I' COS 2(4 - k,z) 

+ [h + aOkor + a,k,r sin '44 - k , ~ ) ]  
k,r 2 2 

(27) 
sin 2% 

2 
where 

(28)  

In order to an additional constant of motion, it is useful to 
perform canonical transformations. Because the com- . 

transformation to the new variables (k,r, x ,  k,z'; P,, 6,, 
P,,) defined by [ 121, 

k,r = k,r, x = 4 - k,z, k,z' = k,z, 

k P  P P, A = - p ,  p -A, pz=- f ,  
d p  a 8  
dz 8% 

mc' + -  mc mc 
x=-- 

cos 2% [ a ,  k ,  r sin 2x1 1 A a,k,r P ,  - - 

k,r 2 2 

bination of (4  - k,  z )  appears in 8, we perform a canonical 
2 

1 - L + L + -  a k r a,k,r sin 2x 

(33) 

(34) 

P ,=P, ,  P, = P,, P,, = P, + P,. (29) x [ a ,  k,r cos 2x3 (35) 

The above transformation was generated by the following 
generating function: 

F,(k,, 9; P,, , P,) = k,  zP,, + (9' + k ,  z )P , .  (30) 

Therefore, the Hamiltonian in the new variable can be 
expressed as 

8 ( k ,  r, x,  k ,  z'; P,, P, , P,J 

sin 2% 
2 

Because does not depend on k,z', it follows that P,. = 
const. Since there is no apparent symmetry to produce a 
third conservation law, then two constants of motion will 
not integrate the problem, and the Hamiltonian is nonin- 
tegrable. Hence, chaotic orbits are possible. Thus, eq. (31) 
possesses two constants of motion, namely, A and b,. . 
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where, to be consistent, we have used the dimensionless time 
parameter z = ck, t.  

The fixed points, or the steady-state orbits, denoted by 
k,  T o ,  xo , Pro and P,, , satisfy the steady-state equations of 
motion 

d(k, r )  
(36) 

(37) 

dX - 0, - = 0, dz dz 
-- 

dP  dP, 
dz dz 

Hence, substitution of eqs (32)-(35) into these last two yields 

_-  - 0, 2 = 0. 

cos 2x0 = 0, (38) 

10 ~ aok,ro I awkuro 

(39) 

1 sin 2x0 

1 a, k, 10 

k,'r0 [:io 2 2 

1 [-= 2 2 

- [P,o - P,,] = 0, 

z + - + - s i n 2 ~ o  = O  (40) P,, a0 a ,  

(41) a, k, ro cos 2x0 = 0. 
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Because a, # 0 and k, ro # 0, then from eq. (41) we get 

cos 2x0 = 0. (42) 

This leads to 

(2n + 1)n , 
xo = , f o r n = 0 , 1 , 2  ,... (43) 

Substituting eq. (41) in eq. (38) one gets 

P,, = 0. (44) 
and from eq. (40) we get 

where the & sign depends on the value of n. Since we 
assume that in the FEL a, > a,,  it is clear from eq. (45) that 
the steady-state orbits correspond to a positive normalized 
angular momentum, i.e. 

P, = P, > 0. 

The radius of the steady-state orbits (k,r,) for a given 
beam energy, yb, is determined from the Hamiltonian in eq. 
(3 l), as follows : 

t i = Y b  

+ [B,b - P,,]’ + 1 

Substituting Pnb from eq. (39) and P,, fr 
(46) yields 

m eq. (45) into eq. 

Squaring both sides and solving for k ,  ro one gets 

(49) 

In the last equation, all the values of k, ro are real unless the 
normalized beam energy Yb is 

Y b  < ( [a ,  4 a,]’ + 1)”’- (50) 
It is, however, more meaningful to plot eq. (49) to represent 
the real solutions of k,ro.  Figure 4 shows k ,  ro as a func- 
tion of the beam energies (yb)at the fixed points (steady- 
state orbits). It is clear that all ya > {[a, & a,]’ + 1}’/’ 

‘yields to bounded orbits. 
To check if the problem is integrable or not, we integrate 

numerically the equations of motion listed in eqs (32)-(35) 
which were derived from the Hamiltonian defined in eq. 
(31), then the nonintegrability of the eiectron motion is 
demonstrated upon computing the Poincare maps. 

A trick [13] is used to find, simply but very accurately, 
the intersection of a numerically integrated trajectory with a 
surface-of-section. The numerical trick and the integration 
techniques are discussed in details in Section 2.7. 

The Poincare surface-of-section method is useful in ana- 
lyzing nonintegrable systems because the dimensionality of 
the Poincark surface is M - 1 if the motion occurs in an 

ya 
Fig. 4. A plot of k, ro as a function of the beam energy (yb)  for the steady- 
state orbits with a, = 3.0, and a, = 0.3. 

M-dimensional phase space. The motion described by the 
Hamiltonian in eq. (31) occurs in the three-dimensional 
phase space (2, b,, b,) because k,r can be determined from 
the constancy of H and pz,. 

As a result, the phase space ( x ,  P,) is chosen to be the 
Poincark surface-of-section, which demonstrates the regular 
and chaotic orbits in the vicinity of the steady-state orbits 
defined in eqs (43)-(45) and eq. (49). 

Figure 5 shows the Poincark surface-of-section plots in 
the (x, b,) plane at br = 0, for A = 3.0, a, = 3.0, and a ,  = 
0.3. These dimensionless parameters correspond to the Yb = 
3.0, Bo = 10.65 KG, and B ,  = 1.065 KG for quadrupole 
wiggler wave length A, = 3.0 cm. 

It should be pointed out that the contours in Fig. 5 are all 
on a surface of constant energy, with fixed initial conditions 
for k,r,  x ,  P,, while different initial conditions for b, are 

0.25 1 

X 
Fig. 5. Poincare surfaceof-section plots in the (x ,  d ) lane at p, = 0, for 
f€ = 3.0, a. = 3.0, and a, = 0.3 for different initial conditions of P, . Z P  
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4 

accomplished by choosing different values for the canonical 
axial momentum pz,. It is evident that these contours 
present regular trajectories. 

An interesting phenomenon is shown in Fig. 6. The stable 
orbits appear in pairs for a given single initial condition, 
although this is not the case in the helical wiggler fields of 
dipole characters. This indicates that the wiggler field we 
used in our configuration holds its quadrupole character- 
istics even in phase space. Figure 7 shows the spread of 
chaos in the Poincart phase space as the quadrupole 
wiggler field amplitude is sufficiently large. The figure corre- 
sponds to the system parameters fi = 3.0, a. = 3.0, and 
a, = 1.2. The maximum numerical value for the measure of 
the wiggler amplitude (a,), that reveals regular orbits, is 
found to be a: = 0.9 ( B ,  = 3.20KG) in the vicinity of the 
above selected parameters. 

I 

0.25 I 
1 I 

0.20 1 
. . . .  

. .  . .  . .  
. . .  

5 A o . ' 5 /  0.10 . . . . .  

1 . 1 1 . 1  

2.30 2.40 2.50 2.60 
x 

Fig. 6. Poincart surface-of-section plots in the (1, P,) plane at P, = 0, for 
fi = 3.0, a, = 3.0, and am = 0.3 with only one initial condition. 
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Fig. 7. Chaos in Poincark surfaceof-section plots in the (x .  P ) lane at 
P, = 0, for fi = 3.0, a ,  = 3.0, and a,  = 1.2 for different initial conditions of Z P  

Pz * 
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2.6. Space charge efect (E, # 0) 
Free-electron laser operation often requires sufficiently large 
gain (growth rate), which increases when the beam current is 
increased. In the high-current (high-density) regime, which is 
usually called the Raman FEL, the electron motion can be 
altered significantly by the equilibrium self-field effects 
associated with the beam space charge and current. This 
raises important questions regarding beam transport and 
the viability of the FEL interaction process in this regime. 

In this section, our main objective is to show how regular 
the particle trajectories are once the plasma effects are con- 
sidered. 

Therefore, the motion of a typical test electron within the 
electron beam can be described by the relativistic Hamilto- 

$9 k w  Z; p r  p+, pz) 

{ 1 + [; + 2I2}ll2 - as = y - 6, const. 

I' 
+ 1}1'2 -- E,k;r2 

COS 2(4 - k, Z) 

(51) 

I' [& aok,r a,k,r +-+- sin 2(4 - k,z) 
k,r 2 2 + 

4 .  

The scalar and the vector potentials related to the space 
charge and current (used in the above Hamiltonian) are all 
derived in Section 2.2. 

The canonical transformation we performed in the pre- 
ceding analysis is still valid and the Hamiltonian still pos- 
sesses two constants of motion. Hence, we rewrite the 
Hamiltonian given in eq. (51) with the new canonical vari- 
ables as follows 
f i ( k ,  r, 2, k, z'; p, , p, , pzt) 

I' = {[p, - !+ cos 2% 

sin 2% 
2 

It is clear that the two constants of motion are fi = 
const. # y and p,. = const. 

Here, we represent the corresponding Hamilton's equa- 
tions of motion as 
d(k,r) al? --- - 

dz aP, 

cos 2x , 1 = - 1 [p. - - awkwr 
Y 2 

sin 2x][ '-1 k, r 

4 9 

(53) 

(54) 
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dP, aA 
dz a(k,  2) 

-=--  

cos 2 4 [  - cos Zx] 

1 

A a,k,r  
P ,  - - 

2 

1 sin 2% 

9 (55 )  

P a. a, 
[k” 2 2 
1 + - + - sin 2x 

4 
dP aA 
dz ax 
A=- 

Making use of the constancy of the Hamiltonian, together 
with eq. (63) we can determine the radius of the steady-state 
orbits in the following manner. 

For a given beam of electrons with energy E,, the Hamil- 
tonian in eq. (52) is rewritten as: 

E = E,  

E, k; r i  
= Y(0) - 4 cos 2x [a, k,  r sin 2x1 

A a,k,r  
P, - - 1 2 

1 a k r  a k r  
+ [$ + + a sin 2% 

2 

x [a ,k , r  cos 2x3 . i 
a0 k,  10 f -I2[ a, k,  ro 1 + ‘1 + 1}112 

2 k i  r i  

Obtaining the equations of motion, we are able to deter- 
mine the steady-state orbits. Therefore, the fixed points 
( k , r o ,  x o ,  P r o ,  Pzo) are solutions of the following set of 

Solving eq. (65), for P,, , one gets 

k i r i  [E ,  + E, k i  r$’4]’ - 1 P,, = - { 2[ 
2 k i r ;  + 1 

equations: 

a, k,  ro cos 2x0 = 0. 
From eq. (60), one finds 

(2n + 1)x 
xo  = ; for n = 0, 1 ,  2, ... 

Substitution of eq. (60) into eq. (57) yields 

Substituting eqs (57), (58) and (61) in eq. (59), we get 
B,, = 0. 

(57) Now, substitution of P,, into eq. (63) yields 

E: - [E,  + E, k i r i / 4 ] 2 [ k t , r g  + 112 - ( [E ,  + E, k i r i / 4 ] ’  - 1 )  4 

x [ k i r ;  + l]’/2[ao f a, + - I PzEsl 2 
(58) 

- ( [E ,  + ~ , k i r ; / 4 ] ~  - = 0 (67) r 
By long but simple algebra, the above equation is reduced 
to the following simple form 

(68) c8x8 + c,x6 + c4x4 + C2X2 + cO=o, 
where 
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4.00 

2.00 : 

CO = {[F + Et - 1 1' - (Et - 1) 

......................... ...;*,; ............ & =Om4 

.... ........... ...................... ... ....*, .t.o..? 

'. 

........ ......... ...... .... .... .... .......... ...... 
.......... ........ .:I... 

'.. 
..... ........... .......... :.'- ..... ......... ......... ........... 1 ........ ......I :'. 

(74) 

...... ....... .... 
:::::::;iiik!:y ::... .... 

0.00 

As one can see from eq. (68) it is of order eight, it is solved 
numerically for a given set of FEL parameters, namely (a,, 
a,, /3,, E ~ ) ,  and different values of E,. Four of the eight roots 
are negative and then neglected, the other four are real and 
imaginary. The imaginary roots are excluded and some of 
the real roots are greater than the normalized beam radius 
( k ,  rb) and are not considered because of our basic assump- 
tion through this section, i.e. (0 < I < rb). Thus, we consider 
the beam energies yielding steady-state orbits with positive, 
real radius less than the beam radius. Figure 8 shows k,rO 
as a function of the beam energies (Eb) at the fixed points 
(steady-state orbits). 

10.00 I 

8.00 1 

10.00 1 

i I 

Fig. 8. A plot of k,ro as a function of the beam energy (Eb) for the steady- 
state orbits for the two cases: (a) a, = 0.3, /?, = 0.94 and E,  = 0.5, and (b) 
a. = 0.0, a, = 0.9, /?, = 0.94. 
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It should be pointed out here that, for self convenience, 
eqs (66) and (67) reduce to eq. (45) and eq. (49) respectively 
in the limit E = 0. 

Again, to demonstrate the nonintegrability of the system 
and the chaotic behaviour of the electron trajectories, the 
Poincare maps of surface-of-section in phase space are 
plotted. 

Figure 9 shows the stable orbits and the regular electron 
motion for a low-current (low-density) beam with the 
dimensionless parameter E, = 0.5 for fi = 4.00, a, = 0.0, 
a, = 0.9, and fi, = 0.94. Figure 10 shows the unstable orbits 
and regular electron motion for E, = 0.5 for I? = 3.00, a, = 
3.0, a, = 0.2, and 8, = 0.94. 

As high-current beams are employed, the phase space 
regular trajectories are destroyed and chaos spreads strong- 

a 0.032 

X 
Fig. 9. Poincar6 surface-of-saction plots in the (x ,  p,) plane at p, = 0, for 
8 = 4.0, a. = 0.0, a, = 0.9, B, = 0.94 and E, = 0.5 with different initial con- 
ditions of p, (stable). 
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.... . . .  . ,  . .  .. ... 

.. 

. .  .... , ..:I 
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. . . .  . . .  ... . . .  . . '  :.I. . .  . .  ...... . .  ... ... . . . .  ...... 

0.04 I , ,  , I  # : m . q ,  ..... ,;a..-.;, ..... , #:a.m .;.,/, ..' , * .  , ,  ..... , ;.- i 
. . . . . . .  ...... ...... ..... ........ ........ ...... 
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Fig. IO. Poincare surface-of-section plots in the ( x ,  p,) plane at p, = 0, for 
l? = 3.0, a. = 3.0, a, = 0.2, 8, = 0.94 and E. = 0.5 with different initials of 
p, (unstable). 
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I cn 

X 
Fig. 11. Chaos in Poincart surface-of-section plots in the ( x ,  p, )  plane at 
p ,  = 0, for fi = 3.0, a, = 3.0, a, = 0.3, B, = 0.94 and e, = 1.5 for different 
initial conditions of p ,  . 

ly in Poincare plots as shown in Fig. 11, which is plotted for 
E. = 1.5 which corresponds to sufficiently large beam 
density, no = 1.86 x 10'2cm-3. 

3. Numerical technique and Henon trick 

The numerical computation of the Poincare surface-of- 
section maps was improved by using the Henon trick. We 
consider an autonomous dynamic system defined by N 
simultaneous differential equations : 

(75) 

A solution can be represented by a curve, or trajectory, in 
an N-dimensional phase space (yl, . . . , yN). 

The successive intersections of the trajectory with the 
surface of section C, which in general is a ( N  - 1)-dimen- 
sional subset of phase space, defined by 

yi - a = 0, (76) 
where a is a constant. A problem is that y, in eq. (76) is a 
dependent variable; therefore we cannot specify in advance 
its variation over an integration step. We can simply rear- 
range the differential system in such a way that y, becomes 
an independent variable. This is done by dividing the N 
equations, excluding the ith one, in system (79 ,  by the ith 
equation, and inverting the ith one; 

dY1 fi 
dyi si' 
-=- 

dyN f N  
x- - 

dY, fi' 

dY, si' 
dt 1 
-P- (77) 

Hence, t has now become a dependent variable. The right- 
hand sides now depend on the independent variable y,, but 
this is of no concern. 

The practical procedure is as follows. We integrate system 
(75) until a change of sign is detected for the quantity S = 
y, - a. We then shift to the system (77). Using the last com- 
puted point, we integrate the differential equations in system 
(77) for one step, taking the integration step 

A Y N  = - S .  (78) 
This brings us at once exactly to the surface of section. After 
having noted the coordinates of the point, we revert to the 
system (75) for the continuation of the integration. 

4. Results and conclusions 

In a Free-Electron Laser, use is made of the unstable inter- 
action of a relativistic electron beam with a transverse 
wiggler magnetic field to generate coherent electromagnetic 
waves. An important parameter characterizing FEL oper- 
ation is the small-signal gain (growth rate). According to 
linear theory, the gain increases as the beam density and the 
strength of the wiggler field are increased. However, in the 
high-current (high-density) regime and in the intense wiggler 
field (strong-pump) regime, the electron orbit can be modi- 
fied significantly by the equilibrium self-fields of the electron 
beams and the transverse spatial gradients in the applied 
wiggler field. In the high-current (high-density) regime, 
plasma effects become important, and therefore the self- 
electric and self-magnetic fields play a significant role in 
altering the electron dynamics. 

In this regard the motion of an inidividual test electron is 
investigated in the field configuration consisting of a con- 
stant amplitude quadrupole wiggler magnetic field, a 
uniform axial-guide magnetic field, and the equilibrium self- 
electric and self-magnetic field produced by the non-neutral 
electron beam. 

A Hamiltonian system with N degrees of freedom is inte- 
grable if it has N independent constants of motion in invol- 
ution, e.g., the Poisson bracket of any pair of them is zero. 
Using this fact, we have formulated the Hamiltonian in 
canonical variables, and the constants of motion are deter- 
mined by means of canonical transformations generated by 
an F ,  kind of generating function. It was found that the 
Hamiltonian possesses only two independent constants of 
motion. Thus, it was shown that the motion is nonin- 
tegrable and chaotic trajectories became possible. 

Here, the nonintegrability is due to the transverse spatial 
gradients in the applied quadrupole wiggler field. The quad- 
rupole wiggler field is strongly radial dependent and we 
have demonstrated this fact in Fig. 3. 

The Poincari surface-of-section method is useful in ana- 
lyzing nonintegrable systems because of the dimensionality 
of the Poincare surface is M - 1 if the motion occurs in an 
M-dimensional phase space. 

The motion described by the Hamiltonians in eqs (31) 
and (52) occurs in the three-dimensional phase space ( x ,  d 
p,), because (k ,r)  is determined from the constancy of 5 
and pzr. 

The Poincare surface-of-section maps have been gener- 
ated by numerically integrating the equations of motion. 
This analysis demonstrates the chaotic motion and illus- 
trates that the earlier analytical estimates have captured the 
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underlying physics involved in the nonlinear dynamics of an 
individual electron. 

For the special case where self-field effects are negligibly 
small, the Poincare maps of the equations of the motion 
were generated in Figs 5-7 and 9-11. It was shown that the 
regular orbits were possible under certain conditions when 
the quadrupole wiggler amplitude is small. As an example, 
Fig. 5 shows the phase plane ( x ,  6,) with quadrupole wiggler 
field amplitude a, = 0.3, is chosen to be the surface-of- 
section in the numerical calculations to demonstrate the 
regular trajectories for small quadrupole-wiggler amplitude. 
It should be pointed out that on the surface of constant 
energy, with fixed initial conditions of (k ,r ,  x,  6,), different 
initial conditions for 6, are accomplished by choosing dif- 
ferent values for the axial canonical momentum 6=,. 

When the dimensionless measure of the quadrupole 
wiggler amplitude (ao) is sufficiently large, it was shown that 
the particle trajectories become strongly chaotic. As the 
wiggler amplitude is increased, we found that the area of 
regular region in phase space decreases in the Poincare 
surface-of-section plots. A Poincark map has been created in 
Fig. 7 showing the chaotic trajectories for a, = 1.2. There- 
fore, this suggests that there is an upper bound on the 
wiggler field strength for Free-Electron Laser operation. 

An interesting feature we mention here is the appearance 
of closed orbits in the Poincart surface-of-section for a 
single initial condition (Fig. 6), while this is not observed in 
the dipole-wiggler field. In our opinion, this is due to the 
fact that our wiggler field has quadrupole characteristics. 

Second, we have shown that the motion is nonintegrable 
and becomes chaotic at the dimensionless equilibrium self- 
field parameter E, = o i / c 2 k ;  increases in size [here, op = 
(47cno e’/”) is the plasma frequency]. However, regular tra- 
jectories are obtained in the phase space for low-density 
beam. Although the nonintegrability is evident in the Ham- 
iltonian, and chaotic behaviour is expected, Fig. 9 demon- 
strates the area of regular region in phase space in the 
Poincare surface-of-section for E, = 0.5 which corresponds 
to beam current 1, = 390A. That is, the equilibrium self- 

fields with E, = 0.5 are not sufficiently strong to cause sig- 
nificant chaoticity in the particle orbits. 

On the other hand, the chaotic behaviour, which is highly 
increased as the beam current is sufficiently increased, has 
been shown in Fig. 11 for E ,  = 1.5 which corresponds to a 
beam current 1, = 2.34kA. 

In this regard one can say that the existence of chaotic 
electron orbits places limits on the quadrupole wiggler field 
amplitude and the transverse beam dimension for beam pro- 
pagation and Free-Electron Laser operation. 

Finally, it should be pointed out that this calculation 
gives the motion of the electrons in the beam before the 
signal field builds up to appreciable amplitudes, so that the 
radiation losses and radiation friction are neglected. It is of 
our future interests to study the effect of the radiation field 
on the electron motion in the quadrupole wiggler field con- 
figurations, in which the Hamiltonian will be an explicit 
function of time and hence it is no more a constant of 
motion. 

References 
1. Thomas, Marshall C. T., “Free Electron Laser” (Macmillan Publ. Co., 

1985), p. 2. 
2. Bilikmen, S. and Abu Safa, M., Turkish J. Phys. 16, 537 (1992). 
3. Uddholm, P., Willet, J. E. and Bilikmen, S., J. Phys. D24, 1278 (1991). 
4. Levush, B., Antonsen, T. M., Manheimer, W. M. and Sprangle, P., 

Phys. Fluids 28(7), 2273 (1985). 
5. Sagdeev, R. et al., “Nonlinear Physics from Pendulum to Turbulence 

and Chaos” (Second Printing) (Harwood Academic Publishers 1990), 
p. 125. 

6. Chen, C. and Davidson, R. C., Phys. Rev. A43,5541(1991). 
7. Hacinliyan, A., Europhys. News 21, 7 (1991). 
8. Chen, C. and Schmidt, G., Comments Plasma Phys. Controlled 

Fusion 12, 83 (1988). 
9. Chang, S. F., Eldridge, 0. C. and Sharer, J. E., IEEE J. of Quantum 

Electronics 24,2308 (1988). 
10. Levush, B., Antonsen, T. M. and Manheimer, W. M., J. Apply. Phys. 

60, 1584 (1986). 
11. Chen, C. and Davidson, R. C., Phys. Rev. A42,5041(1990). 
12. Goldstein, H., “Classical Mechanics” (Second Edition) (Addison- 

Wesley 1980), ch. 8. 
13. Henon, M., Physica SD, 412 (1982). 

Physica Scripta 50 

oktaydogdu
Comment on Text
Bu cümle, C.Chen,R.C.Davidson, Phys.Fluids B, 2 (1990) 171 makalesinden bire bir alınmış ve referans verilmemiştir
 (40. denklemin altındaki 2. paragraf)

oktaydogdu
Comment on Text
Bu cümle, C.Chen,R.C.Davidson, Phys.Rev.A, 43 (1991) 5541 makalesinden bire bir alınmıştır.


